[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
35
(6): 2022/10/23(日)08:33 ID:5JY9jG/V(5/9) AAS
つづく

別の視点では、”時枝記事の「99/100以上」という勝率”が、
非正則分布を使った>>28
条件付き確率と考えることができる>>17
ってことだね
以上
36
(1): 2022/10/23(日)10:02 ID:FslZLbrv(1/4) AAS
>>35
固定された出題列から一意に定まる100列の決定番号は定数。
定数だから非正則分布は使っていない。反論があるなら記事原文からエビデンスを引用せよ。数学板は妄想を語る場ではない。
定数だからその決定番号の組となる確率は1。よって条件付き確率として考える必要は無い。考えたところで1×(99/100)=99/100。
37
(1): 2022/10/23(日)11:07 ID:5JY9jG/V(6/9) AAS
>>36
>固定された出題列から一意に定まる100列の決定番号は定数。

だから、
条件付き確率と考えることができる>>17
ってことだね>>35
39: 2022/10/23(日)11:12 ID:P+OAB88L(2/9) AAS
>>35
>別の視点では、”時枝記事の「99/100以上」という勝率”が、
>非正則分布を使った>>28
>条件付き確率と考えることができる>>17

これは>>18-22と>>>>24-27で反論済み。
40: 2022/10/23(日)11:18 ID:P+OAB88L(3/9) AAS
>>35
>別の視点では、”時枝記事の「99/100以上」という勝率”が、
>非正則分布を使った>>28
>条件付き確率と考えることができる>>17

おバカなスレ主のために、簡単な具体例を出そう。

写像 f:N → N を、f(k)= k (k≧1) と定義する。
また、1枚の封筒があって、確率 1/2^k で f(k) ドル入っているとする(k≧1)。
省10
236
(7): 2022/10/29(土)15:46 ID:TJ1yzMer(5/16) AAS
>>220 補足
> 決定番号は、多項式環の多項式の次数+1と解せられる>>161
> 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること
> そこが、時枝記事のトリックのキモです

<補足>
これについては、>>32-35に書いてあるが
さらに、掘り下げようと思う
省17
309
(4): 2022/10/30(日)14:49 ID:S1FiB990(5/19) AAS
>>238-239 補足
>無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。

ここを補足すると
1)数論系では:
有限小数環FD⊂有理数環Q⊂実数環R(or 複素数環C)
(注:有限小数 Finite decimalより、FDとした )
ここで
省18
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s