[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
777: 132人目の素数さん [] 2022/11/06(日) 11:17:52.09 ID:4rX/NHRo >>770 >>>768 >>ただし「代表系のリストが手に入る」という仮定は選択公理を超えている >実はそうです >選択公理が存在することと、選択を実現するアルゴリズムが存在することとは別です アホちゃう 1) 選択を実現するアルゴリズムが存在しても、 それに対して、常に新しい公理系を考えるべきってかい?("選択公理を超えている") ある日まで、具体的アルゴリズムが考えられていなかったとして 次の日に、具体的アルゴリズムが考えられて、それはZFC内ってこと多いんじゃね? 例えば、リーマン予想がある日ZFC内で証明できるが如しだ (実際に、最初のリーマン予想内で可能かどうかはしらんけどね なお、ABC予想の望月IUTは、ZFC外らしい(圏論使うのでGrothendieck universe下記を仮定するという)) 2) 次に 零集合(下記)分かりますか? 零集合は、存在するが、確率0 が、確率0は非存在を意味しない 区間[0,1]内の実数r1点は、確率0だが存在する (今の場合、ZFC内の話) ここが理解できないと、時枝は理解できない 3) 時枝記事通りの決定番号 d1,d2,・・d100 の組合わせは、存在することはありだ が、もしそれが存在確率0ならば、全体として0*(99/100)=0 でしかない この場合、カンニングリスト=問題の列(の問題の箱)に対応する代表列の箱の数 なのだが これが、時枝記事のトリックの一つの説明ですね (参考) https://en.wikipedia.org/wiki/Axiom_of_choice 選択公理 7 Stronger axioms The axiom of global choice follows from the axiom of limitation of size. Tarski's axiom, which is used in Tarski?Grothendieck set theory and states (in the vernacular) that every set belongs to some Grothendieck universe, is stronger than the axiom of choice. https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論 可測集合 S が μ(S) = 0 であるとき零集合という。測度 μ が完備であるとは、零集合の全ての部分集合が可測であることである (完備測度への拡張)可測集合 S と零集合の分だけ異なる集合 S' たち(すなわち、そのような S と S' の対称差は零集合である)をすべて合わせたものの成す完全加法族を考えればよい http://rio2016.5ch.net/test/read.cgi/math/1666352731/777
782: 132人目の素数さん [] 2022/11/06(日) 12:02:16.68 ID:4rX/NHRo >>777 タイポ訂正 (実際に、最初のリーマン予想内で可能かどうかはしらんけどね ↓ (実際に、最初のリーマン予想がZFC内で可能かどうかはしらんけどね >>702 大数の法則追加引用 ”公理的確率により構成される確率空間の体系は、統計学的確率と矛盾しないことを保証する定理である” ”大数の法則は(有限な)期待値の存在を仮定している。期待値の存在しない場合は、大数の法則が当てはまらないことがある” 非正則分布は、期待値(平均値)が発散しているので、大数の法則は当てはまらない そもそも、非正則分布は公理的確率の外だしw (参考) https://ja.wikipedia.org/wiki/%E5%A4%A7%E6%95%B0%E3%81%AE%E6%B3%95%E5%89%87 大数の法則 公理的確率により構成される確率空間の体系は、統計学的確率と矛盾しないことを保証する定理である。 大数の法則は「独立同分布に従う可積分な確率変数列の標本平均は平均に収束する」と述べられる 仮定を満たさない例 大数の法則は(有限な)期待値の存在を仮定している。期待値の存在しない場合は、大数の法則が当てはまらないことがある。例えば安定分布における特性指数が α ? 1 の場合(例:コーシー分布)である。また、大数の法則が成立するためには事象の独立性が保証されなければならない。 https://manabitimes.jp/math/1119 高校数学の美しい物語 コーシー分布とその期待値などについて2021/03/07 期待値が存在しない分布,裾が重い分布の代表です。 目次 コーシー分布について 具体例 コーシー分布の期待値 正規分布とコーシー分布 大数の法則が成立しない https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%86%E5%B8%83 コーシー分布 https://en.wikipedia.org/wiki/Cauchy_distribution Cauchy distribution The Cauchy distribution is often used in statistics as the canonical example of a "pathological" distribution since both its expected value and its variance are undefined (but see § Explanation of undefined moments below). http://rio2016.5ch.net/test/read.cgi/math/1666352731/782
795: 132人目の素数さん [] 2022/11/06(日) 13:36:48.23 ID:4rX/NHRo >>777 (>>782) 補足 (引用開始) >>770 >>>768 >>ただし「代表系のリストが手に入る」という仮定は選択公理を超えている >実はそうです >選択公理が存在することと、選択を実現するアルゴリズムが存在することとは別です お主、基礎論弱いなw ・「アルゴリズムが存在する」は、構成主義(下記)じゃなかったかな? ・実数の構成では、一般的に 構成主義⊂ZFCじゃね? (参考) https://ja.wikipedia.org/wiki/%E6%A7%8B%E6%88%90%E4%B8%BB%E7%BE%A9_(%E6%95%B0%E5%AD%A6) 構成主義(こうせいしゅぎ、英: constructivism)とは、「ある数学的対象が存在することを証明するためには、それを実際に見つけたり構成したりしなければならない」という考えのことである。標準的な数学においてはそうではなく、具体的に見つけることなしに背理法によって存在を示す、すなわち存在しないことを仮定して矛盾を導くことがよくある。この背理法というものは構成的に見ると十分ではない。構成的な見地は、古典的な解釈をもって中途半端なままである、存在記号の意味を確かめることを含む。 多くの形の構成主義がある[1]。これらはブラウワーによって創始された直観主義のプログラム、ヒルベルトならびにベルナイスの有限主義(英語版)、Shamin(英語版)ならびにMarkov(英語版)の構成的で再帰的な数学、そして構成的解析学(英語版)であるBishop(英語版)のプログラムを含む。構成主義はCZF(英語版)やトポス論の研究のような構成的集合論(英語版)の研究もまた含む。 構成主義はしばしば直観主義と同一視される、しかしながら直観主義は構成主義者のプログラムのひとつでしかない。 https://en.wikipedia.org/wiki/Constructivism_(philosophy_of_mathematics) Constructivism (philosophy of mathematics) Contents 1 Constructive mathematics 1.1 Example from real analysis 1.2 Cardinality 1.3 Axiom of choice 1.4 Measure theory Measure theory Classical measure theory is fundamentally non-constructive, since the classical definition of Lebesgue measure does not describe any way how to compute the measure of a set or the integral of a function. http://rio2016.5ch.net/test/read.cgi/math/1666352731/795
800: 132人目の素数さん [] 2022/11/06(日) 13:53:00.36 ID:+0wVTm4U >>777 >選択を実現するアルゴリズムが存在しても、 そのアルゴリズムとやら、示してみて 示せないなら存在するとの仮定が偽 >時枝記事通りの決定番号 d1,d2,・・d100 の組合わせは、存在することはありだ >が、もしそれが存在確率0ならば、全体として0*(99/100)=0 でしかない d1,d2,・・d100 の組合わせが固定された状況での確率だから1*(99/100)=99/100 バ カ 丸 出 し http://rio2016.5ch.net/test/read.cgi/math/1666352731/800
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.047s