[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
603: 132人目の素数さん [] 2022/11/03(木) 16:39:55.82 ID:fNTesdKc >>560 >時枝戦略の確率空間に非可測集合は現れない ここだけ同意 「非可測集合は現れない」というより 「非可測集合は現れても、結果には影響しない」が正確な表現だろう >>556より http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 このP5 従属選択の公理 (Axiom of Dependent Choice, DC),より DC とは, 極大要素を持たない二項関係は無限上昇鎖をもつ, という主張です. あきらかに, 選択公 理 AC は DC を導きます. 逆に DC から AC を導くことができないことは, 定理 1 によって明らかです*6. DC はルベーグ可測でない集合の存在を導くほどには強くないのです. そのいっぽうで, 測度の理論に必要となる, 可算個の集合からの同時選択 (可算選択の公理) は DC によっ て保証されます. また, 第 3 節で展開されるボレル集合のコードの理論には, 可算選択の公理だけでは不十分 で, 本当に DC が必要です. その理由は, DC が整礎的二項関係のとりあつかいを簡単にする点にあります. (引用終り) 1)従属選択公理DCは、可算選択公理を含み、それよりも強い。しかし、非可測集合を作ることはできない(下記) 2)いま、非可算の完全代表系を弱めて、可算無限個の代表系を選んだとしよう そして、時枝の100個の代表が、この可算の代表系に含まれていたとする この場合、時枝で使うのは、100個の代表のみだから、問題なく時枝のトリックは進行する 3)もちろん、選択公理を使って、完全代表系を使っても良いが 重要なのは、これと上記2)とで、全く同じ結果が導かれることだ 4)上記2)の場合は、非可測集合は経由していない 5)つまり、使うのは100個(たかだか有限個)であり 非可測集合を経由しようが、あるいは経由しなくても 両者の結果は、同じ! 6)よって、「非可測集合は現れても、結果には影響しない」 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/603
604: 132人目の素数さん [] 2022/11/03(木) 16:40:35.94 ID:fNTesdKc >>603 つづき (参考) https://en.wikipedia.org/wiki/Axiom_of_dependent_choice In mathematics, the axiom of dependent choice, denoted by DC Relation with other axioms Unlike full AC, DC is insufficient to prove (given ZF) that there is a non-measurable set of real numbers The axiom of dependent choice implies the axiom of countable choice and is strictly stronger.[4][5] It is possible to generalize the axiom to produce transfinite sequences. If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice. https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 可算選択公理 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/604
606: 132人目の素数さん [sage] 2022/11/03(木) 16:55:07.62 ID:8HW9bynv >>603-604 ところで、🐎🦌の1は 「同値類から代表列を選ぶのは誰」 と思ってる? 回答者が列を選ぶ前に、 出題者もしくは他の第三者があらかじめ選ぶなら 確実に成功確率は99/100である 問題は、回答者自身が自分が見た情報だけで選ぶなら そんなの成功するのは無理に決まってる もしかして、1は勝手に 「同値類を選ぶのは回答者のみ それも自分が見た情報のみから決めるに決まってるだろ」 と🐎🦌な思い込みをしてると思えたので敢えて指摘した http://rio2016.5ch.net/test/read.cgi/math/1666352731/606
607: 132人目の素数さん [] 2022/11/03(木) 17:01:35.32 ID:9qPw9m6/ >>603 >ここだけ同意 じゃ非可測は諦めるのね? 確率論の専門家の意見を否定するのね? >「非可測集合は現れない」というより >「非可測集合は現れても、結果には影響しない」が正確な表現だろう 「非可測集合は現れない」で正確。 実際、時枝戦略の確率空間を(Ω,F,P)と書くと Ω={1,2,...,100}, F=2^Ω, P:F→[0,1] P(f)=|f|/|Ω| と、どこにも非可測集合は現れない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/607
610: 132人目の素数さん [] 2022/11/03(木) 17:13:54.03 ID:9qPw9m6/ >>603 >2)いま、非可算の完全代表系を弱めて、可算無限個の代表系を選んだとしよう > そして、時枝の100個の代表が、この可算の代表系に含まれていたとする 完全代表系があればこのような無茶苦茶な前提を付ける必要が無い 無茶苦茶な前提付きの戦略は勝つ戦略とは呼べない http://rio2016.5ch.net/test/read.cgi/math/1666352731/610
614: 132人目の素数さん [sage] 2022/11/03(木) 17:27:14.47 ID:7Xhr0F/H >>603 >2)いま、非可算の完全代表系を弱めて、可算無限個の代表系を選んだとしよう > そして、時枝の100個の代表が、この可算の代表系に含まれていたとする 可算無限個の代表しか持ってないなら、100列に分解した実数列に対する100個の代表を 「回答者が持ってない」という状況が頻発する。この場合、時枝戦術が実行できない。 このことはスレ主も理解しているので、 >そして、時枝の100個の代表が、この可算の代表系に含まれていたとする という仮定を置いている。言い換えれば、 ・ そのような状況が実現されるような実数列 s しか、出題者は出題できない ということである。当然ながら、出題者が出題できる実数列はかなりの制限を受ける。 自由な出題は ほとんど不可能で、iid なんて実現できない。 そして、スレ主はそういう仮定を置いたということになる。 この状況をさらに制限して、「3種類の実数列の中から出題する」という設定にしたのが >>608のトイモデル。そして、スレ主はこのトイモデルに一度も返答したことがないw http://rio2016.5ch.net/test/read.cgi/math/1666352731/614
727: 132人目の素数さん [] 2022/11/05(土) 13:59:14.55 ID:TS95wV6e >>715 >>603で >>時枝戦略の確率空間に非可測集合は現れない >ここだけ同意 と言ったのはあなたでしょ?昨日自分で言ったこともう忘れたの?あなたは白痴ですか? http://rio2016.5ch.net/test/read.cgi/math/1666352731/727
730: 132人目の素数さん [] 2022/11/05(土) 14:47:17.20 ID:3kC00iWj >>727 >>>715 >>>603で >>>時枝戦略の確率空間に非可測集合は現れない >>ここだけ同意 >と言ったのはあなたでしょ?昨日自分で言ったこともう忘れたの?あなたは白痴ですか? 補足するよ 1)>>603で言ったのは、時枝氏の記事の https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 を否定しているってことね つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ 2)一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 会田茂樹氏 https://www.jstage.jst.go.jp/article/sugaku/64/3/64_0643278/_pdf/-char/ja では、”無限次元空間では 考えている空間上の仮想的な “一様測度” (“ルベーグ測度”) dφ に収束因子のかかった形式的な表現 dμh- = (1/Zh-) exp-h--1F(φ)dφ (Zh- は規格化定数,F(φ) は考えている空間上の汎関数) を持つ ウエイト付き確率測度 (これは厳密に定義できる) をもとに定式化され” とあるから読んでみたら? ともかく、時枝記事では、ルベーグ測度や(ルベーグ)積分は、そのままでは使えないってことこと それが>>715の主張だよ 3)両者(>>603と>>715と)は、数学的主張として別物ですよ http://rio2016.5ch.net/test/read.cgi/math/1666352731/730
746: 132人目の素数さん [] 2022/11/05(土) 20:14:57.79 ID:3kC00iWj >>730 > つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく > 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ >一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) > だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 >両者(>>603と>>715と)は、数学的主張として別物ですよ 落ちこぼれ、”非可測”も十把一絡げ 細かく見ると、違いが分かるんだよ 1)ヴィタリ集合は、実数R上のルベーグ測度に対して、 選択公理を用いて、R/Qの完全代表系を利用することで、構成される>>512 2)「R^N自身にルベーグ測度が入らない」(会田茂樹 2007, 藤田博司)は、 そもそも「ボレル集合とその測度」>>515 において 測度を”開矩形 (open rectangle)” mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) で定義することに由来する いま簡単に、Li=bi - ai とおいて、全てのLiがLに等しいとすると mes(I) =L^n と書ける これで n→∞ とすると、mes(I) =L^∞ となる 明らかに、0<L<1なら0に潰れ 1<Lなら∞に発散する ここに、選択公理は関係ない つまり、ヴィタリ集合の非可測とは全く異なるのです 3)関数の可測性は、 関数の可測な像の逆像がまた可測になるというもの>>716 (非可測な関数は、これが保証されない。そうなるとルベーグ積分ができないのです。) (ルベーグ積分ができないと、測度論による確率計算をすることができないことに) 落ちこぼれさんは、 この3つの非可測の区別が 理解できないらしい http://rio2016.5ch.net/test/read.cgi/math/1666352731/746
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s