[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
564: 132人目の素数さん [] 2022/11/03(木) 14:00:13.46 ID:fNTesdKc >>556 補足 > 2)ここで、あるm, log (bm - am) から先が、早く減衰すると > 総和Σは、発散せずにある値に収束する 1)いま、簡単に cm=bm - am と書き直すと log cm から先が、早く0に減衰するということは cm→1 ってことです( log cm→0になる ) 2)つまり、座標で (c1,c2,・・cm,・・)として ここで cm,・・の部分が、 ほとんどが1、またはcm≒1かつlog cm が1/xより早く減衰する必要あり ってことです 3)上記のような部分だけが、 有限次元のユークリッド空間におけるルベーグ測度の拡張がうまく機能する 4)しかし、それ以外では ・例えば、0<cm<1-ε の場合は、ルベーグ測度は0に潰れ ・例えば、1+ε<cm の場合は、ルベーグ測度は∞に発散してしまう (εは、0<ε なる任意の実数) 5)なので、 >>523 藤田 博司 ”無限次元のバナッハ空間では・・ルベーグ測度に相当する具合のいい測度も存在しないので・・”ってことでしょうね (なお、追加 下記 会田茂樹先生の記述も ご参照) (参考) https://www.jstage.jst.go.jp/article/sugaku/64/3/64_0643278/_article/-char/en 数学 2012 Volume 64 Issue 3 Pages 278- https://www.jstage.jst.go.jp/article/sugaku/64/3/64_0643278/_pdf/-char/ja 無限次元空間上のシュレディンガー作用素の準古典極限 会田茂樹 2007 年度解析学賞受賞者 無限次元空間にはルベーグ測度のような一様測度は存在しないので, 有限次元空間のときと同じようには作用素を定義できない. 無限次元空間では 考えている空間上の仮想的な “一様測度” (“ルベーグ測度”) dφ に収束因子のかかった形式的な表現 dμh- = (1/Zh-) exp-h--1F(φ)dφ (Zh- は規格化定数,F(φ) は考えている空間上の汎関数) を持つ ウエイト付き確率測度 (これは厳密に定義できる) をもとに定式化され,この形式的な表示を用いて漸 近挙動が予測できることになる.これは,あくまで形式的な表示だが,有限次元では,もちろんきちん とした意味を持ち,このウエイト付き測度に関するディリクレ形式の生成作用素のスペクトルギャッ プの h- → 0 での漸近挙動の研究は多くの確率論研究者,解析学者によってなされてきたものである http://rio2016.5ch.net/test/read.cgi/math/1666352731/564
589: 132人目の素数さん [sage] 2022/11/03(木) 15:47:43.40 ID:8HW9bynv >>564 1は都合が悪くなると脇道に入り込んで出てこなくなる 馬鹿の典型 馬鹿は関係な思考にはまり込んで自分が利口だと自惚れるw http://rio2016.5ch.net/test/read.cgi/math/1666352731/589
612: 132人目の素数さん [] 2022/11/03(木) 17:18:29.06 ID:fNTesdKc >>473-474 戻る >ヴィタリ集合 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 >ここで、重要ポイントが二つ > 1)全体集合Rにルベーグ測度が与えられていること > 2)ルベーグ可測が平行移動に不変で、ヴィタリ集合Vは非可算濃度で、Vの[-1.+1]の範囲の有理数qの平行移動で可算無限和Σλ(V)を作ること >ここは押さえておきたいね 1)>>564に記したように、時枝のような無限次元空間R^Nには、 ”ルベーグ測度のような一様測度は存在しない”(会田茂樹)という 2)時枝氏は、>>55「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 という 3)しかし、ヴィタリの非可測集合の前提である ”全体集合(今の場合 R^N) にルベーグ測度が与えられている”が、不成立だ だから、無限次元空間R^Nになんらかの測度を与えるところから始める必要ありだ 4)そして、1次元空間Rのルベーグ測度におけるヴィタリの証明における a)平行移動で測度不変 b)区間[0,1]に断面を作ったこと この二つを、無限次元空間R^Nで どう実現するのか? 5)繰り返すが、”ルベーグ測度の代替(R^N上の)”、"平行移動で測度不変"、”区間[0,1]に相当する断面は?” 最低この3つを、はっきりさせないと、「そっくりである」とは言えないよ 6)私も、R^N/~の完全代表系が、可測集合になるとは思わないがw R^Nに”ルベーグ測度のような一様測度は存在しない”(会田茂樹)を考えると 「時枝さん、何言っているの? ヴィタリそっくりであるとは言えないよ!」 と思うわけですww (要するに、数学として非可測の証明がまだ無いのです!!) http://rio2016.5ch.net/test/read.cgi/math/1666352731/612
709: 132人目の素数さん [] 2022/11/05(土) 09:52:22.34 ID:3kC00iWj >>705 >Fubiniの定理が成り立たない状況で Fubiniの定理以前に R^Nに ルベーグ測度が定義できないよ (会田茂樹 2007>>564, 藤田博司>>556) よって、(ルベーグ)積分ができないぞw だから、どうぞ別の測度の導入からやってね そして、その上の積分論の展開をよろしくねw これ、あんたに出来るとは思わないがねwww http://rio2016.5ch.net/test/read.cgi/math/1666352731/709
730: 132人目の素数さん [] 2022/11/05(土) 14:47:17.20 ID:3kC00iWj >>727 >>>715 >>>603で >>>時枝戦略の確率空間に非可測集合は現れない >>ここだけ同意 >と言ったのはあなたでしょ?昨日自分で言ったこともう忘れたの?あなたは白痴ですか? 補足するよ 1)>>603で言ったのは、時枝氏の記事の https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 を否定しているってことね つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ 2)一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 会田茂樹氏 https://www.jstage.jst.go.jp/article/sugaku/64/3/64_0643278/_pdf/-char/ja では、”無限次元空間では 考えている空間上の仮想的な “一様測度” (“ルベーグ測度”) dφ に収束因子のかかった形式的な表現 dμh- = (1/Zh-) exp-h--1F(φ)dφ (Zh- は規格化定数,F(φ) は考えている空間上の汎関数) を持つ ウエイト付き確率測度 (これは厳密に定義できる) をもとに定式化され” とあるから読んでみたら? ともかく、時枝記事では、ルベーグ測度や(ルベーグ)積分は、そのままでは使えないってことこと それが>>715の主張だよ 3)両者(>>603と>>715と)は、数学的主張として別物ですよ http://rio2016.5ch.net/test/read.cgi/math/1666352731/730
746: 132人目の素数さん [] 2022/11/05(土) 20:14:57.79 ID:3kC00iWj >>730 > つまり、代表は100個しか使わない。ヴィタリ集合のように、代表を非可算個使えばともかく > 有限個の代表使用だけでは、ヴィタリ類似の非可測集合を使っているとは言えないということ >一方で、R^N自身にルベーグ測度が入らないという (会田茂樹 2007>>564, 藤田博司>>556) > だから、このままでは、R^N上の関数もルベーグ可測関数にはならないのは明白 >両者(>>603と>>715と)は、数学的主張として別物ですよ 落ちこぼれ、”非可測”も十把一絡げ 細かく見ると、違いが分かるんだよ 1)ヴィタリ集合は、実数R上のルベーグ測度に対して、 選択公理を用いて、R/Qの完全代表系を利用することで、構成される>>512 2)「R^N自身にルベーグ測度が入らない」(会田茂樹 2007, 藤田博司)は、 そもそも「ボレル集合とその測度」>>515 において 測度を”開矩形 (open rectangle)” mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) で定義することに由来する いま簡単に、Li=bi - ai とおいて、全てのLiがLに等しいとすると mes(I) =L^n と書ける これで n→∞ とすると、mes(I) =L^∞ となる 明らかに、0<L<1なら0に潰れ 1<Lなら∞に発散する ここに、選択公理は関係ない つまり、ヴィタリ集合の非可測とは全く異なるのです 3)関数の可測性は、 関数の可測な像の逆像がまた可測になるというもの>>716 (非可測な関数は、これが保証されない。そうなるとルベーグ積分ができないのです。) (ルベーグ積分ができないと、測度論による確率計算をすることができないことに) 落ちこぼれさんは、 この3つの非可測の区別が 理解できないらしい http://rio2016.5ch.net/test/read.cgi/math/1666352731/746
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.042s