[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
560: 132人目の素数さん [] 2022/11/03(木) 13:05:35.27 ID:9qPw9m6/ >>549 >非可測になるので勝つ戦略があるとは言えないでも構わないのでは? ダメ 時枝戦略の確率空間に非可測集合は現れない http://rio2016.5ch.net/test/read.cgi/math/1666352731/560
562: 132人目の素数さん [] 2022/11/03(木) 13:50:01.90 ID:R2j0K+g7 >>560 時枝戦略の証明に問題があるわけじゃなくて時枝記事の設問と時枝戦略の間に齟齬がある 設問では一回限りの試行のケースも含まれるように思える http://rio2016.5ch.net/test/read.cgi/math/1666352731/562
603: 132人目の素数さん [] 2022/11/03(木) 16:39:55.82 ID:fNTesdKc >>560 >時枝戦略の確率空間に非可測集合は現れない ここだけ同意 「非可測集合は現れない」というより 「非可測集合は現れても、結果には影響しない」が正確な表現だろう >>556より http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 このP5 従属選択の公理 (Axiom of Dependent Choice, DC),より DC とは, 極大要素を持たない二項関係は無限上昇鎖をもつ, という主張です. あきらかに, 選択公 理 AC は DC を導きます. 逆に DC から AC を導くことができないことは, 定理 1 によって明らかです*6. DC はルベーグ可測でない集合の存在を導くほどには強くないのです. そのいっぽうで, 測度の理論に必要となる, 可算個の集合からの同時選択 (可算選択の公理) は DC によっ て保証されます. また, 第 3 節で展開されるボレル集合のコードの理論には, 可算選択の公理だけでは不十分 で, 本当に DC が必要です. その理由は, DC が整礎的二項関係のとりあつかいを簡単にする点にあります. (引用終り) 1)従属選択公理DCは、可算選択公理を含み、それよりも強い。しかし、非可測集合を作ることはできない(下記) 2)いま、非可算の完全代表系を弱めて、可算無限個の代表系を選んだとしよう そして、時枝の100個の代表が、この可算の代表系に含まれていたとする この場合、時枝で使うのは、100個の代表のみだから、問題なく時枝のトリックは進行する 3)もちろん、選択公理を使って、完全代表系を使っても良いが 重要なのは、これと上記2)とで、全く同じ結果が導かれることだ 4)上記2)の場合は、非可測集合は経由していない 5)つまり、使うのは100個(たかだか有限個)であり 非可測集合を経由しようが、あるいは経由しなくても 両者の結果は、同じ! 6)よって、「非可測集合は現れても、結果には影響しない」 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/603
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.212s*