[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
55: 132人目の素数さん [] 2022/10/24(月) 08:07:08.58 ID:/NL28vFA >>47 補足 (参考)>>1より 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、過去スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. (引用終り) 1)>>47で示したように、可算無限列→形式的冪級数→しっぽの同値類=多項式環 (一つの同値類 形式的冪級数τの同値類=τ+多項式環 K[x] とかける("+"は記号の濫用)) 2)なので、+多項式環 K[x] 自身は、可測も非可測も関係ない (関係ないというより、可測あ非可測かで論じる対象ではない) 3)なので、この部分の時枝氏の”お手つき”とか、何を数学的に主張しているのか? さっぱり、意味不明の陳述を書いているのです。大丈夫かな、この人 4)ポイントは、無限次元空間から100個の有限次元ベクトルを選んで その有限次元ベクトルたちの”次元の大小”の確率計算で、確率99/100を出して、自慢しているw それって、正当な数学になっているの? そこが一番の問題でしょ! http://rio2016.5ch.net/test/read.cgi/math/1666352731/55
56: 132人目の素数さん [] 2022/10/24(月) 08:10:17.61 ID:/NL28vFA >>55 タイポ訂正 (関係ないというより、可測あ非可測かで論じる対象ではない) ↓ (関係ないというより、可測か非可測かで論じる対象ではない) http://rio2016.5ch.net/test/read.cgi/math/1666352731/56
57: 132人目の素数さん [sage] 2022/10/24(月) 11:24:10.37 ID:2t6x/A5G >>55 >4)ポイントは、無限次元空間から100個の有限次元ベクトルを選んで > その有限次元ベクトルたちの”次元の大小”の確率計算で、確率99/100を出して、自慢しているw > それって、正当な数学になっているの? > そこが一番の問題でしょ! そこが一番の問題で、可測性は関係ないのであれば、 スレ主が本当に対象にすべきなのは前スレ>>581-583である。 まさしく、全ての事象が可測であり、しかも有限次元ベクトルたちの ”次元の大小”の確率計算で確率99/100を出しているからだ。 https://rio2016.5ch.net/test/read.cgi/math/1660377072/581-583 しかし、スレ主は>581-583を完全スルーしている。 すなわち、スレ主が本当に論じるべき対象からスレ主は逃げ続けている。 ここがスレ主の限界。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/57
58: 132人目の素数さん [] 2022/10/24(月) 11:36:25.18 ID:UKdTJBSM >>55 補足 >ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 この部分は、原文まま(さっき原文を確認した) 「Q/Zを「差が有理数」で類別した代表系」?? これって、今更だけど 「ヴィタリ集合は、R/Q(二つの無理数の差が有理数)で類別した完全代表系で、その完全代表系を区間[0,1]内にとった集合」 とでも書くべきでしょ?(下記ヴィタリ集合ご参照) 「Q/Z」は、R/Qの単純タイポと思いたいけど・・ ”時枝さん、大丈夫? ”非可測集合”のこと、理解して書いている?” と、つい思ってしまうなw (参考) https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 構成と証明 有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける。 R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる。このようにして作られた集合がヴィタリ集合と呼ばれているものである。すなわち、ヴィタリ集合 V は [0, 1] の部分集合で、各 r ∈ R に対して v - r が有理数になるような一意的な v を要素に持つものである。ヴィタリ集合 V は不可算であり、 u,v∈V,u ≠ vであれば v - u は必ず無理数である。 ヴィタリ集合は非可測である。これを示すために V が可測だったとして矛盾を導く。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/58
61: 132人目の素数さん [] 2022/10/24(月) 12:20:37.60 ID:nX9X3Yyh >>55 >4)ポイントは、無限次元空間から100個の有限次元ベクトルを選んで 選ぶのは出題者。 出題者が選んで固定した後に回答者のターンとなる。 回答者から見たらただの定数。 > その有限次元ベクトルたちの”次元の大小”の確率計算で、確率99/100を出して、自慢しているw 次元の大小の確率計算?なにそれw 決定番号は自然数だから大小関係が一位に定まり、単独最大の列はたかだか1列。 100列のいずれかをランダムに選んでその列を選ばなければ勝ち。よって勝率は99/100以上。 至極簡単。 > それって、正当な数学になっているの? 至極正当な数学 中卒が誤解してるだけ > そこが一番の問題でしょ! 上記のような至極簡単な話をいつまで経っても理解できない中卒の頭の悪さが一番の問題! http://rio2016.5ch.net/test/read.cgi/math/1666352731/61
63: 132人目の素数さん [] 2022/10/24(月) 20:55:33.03 ID:/NL28vFA >>58 >”時枝さん、大丈夫? ”非可測集合”のこと、理解して書いている?” >と、つい思ってしまうなw <ヴィタリ集合補足> 1)ヴィタリ集合の非可測性の集合についての証明について、下記英文のwikipediaに詳しい 2)つまり、ヴィタリ集合Vを区間[-1,1]の有理数を全部挙げて、平行移動した集合から [0,1]⊆ ∪k V_k⊆ [-1,2]とできる 3)つまり、集合和 ∪k V_k には、区間[0,1]が含まれ(下記英文)、これは可測集合である 4)まとめると、非可測たるヴィタリ集合Vを可算個集めると、その中に(可測集合)区間[0,1]を含ませることができるし ヴィタリ集合Vは、(可測集合)区間[0,1]に含まれるし そして、もちろんヴィタリ集合Vの可算個の元を集めれば、それは可測である 5)よって、ヴィタリ集合Vは、それ全体として非可測なのであって、 ヴィタリ集合Vを含む可測集合を構成可能であり、また、ヴィタリ集合の一部なら、可算部分なら可測だよ! こんな事情なので、時枝氏の「選択公理や非可測集合を経由したからお手つき!」>>55 だなんて、果たして、時枝氏は、これで「何を言いたかったの」かな?w (参考) https://en.wikipedia.org/wiki/Vitali_set Vitali set Non-measurability A Vitali set is non-measurable. To show this, we assume that V is measurable and we derive a contradiction. Let q_1,q_2,・・・ be an enumeration of the rational numbers in [-1,1] (recall that the rational numbers are countable). From the construction of V, note that the translated sets V_k=V+q_k={v+q_k:v∈ V}, k=1,2,・・・ are pairwise disjoint, and further note that [0,1]⊆ ∪k V_k⊆ [-1,2]. To see the first inclusion, consider any real number r in [0,1] and let v be the representative in V for the equivalence class [r]; then r-v=q_i for some rational number q_i in [-1,1] which implies that r is in V_i. http://rio2016.5ch.net/test/read.cgi/math/1666352731/63
68: 132人目の素数さん [] 2022/10/25(火) 11:59:36.20 ID:JXoOrGqY >>55 補足 (引用開始) さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、過去スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. (引用終り) 1)R^1は1次元数直線、R^2はxy2次元平面、R^3はxyz3次元立体空間、R^4は4次元時空、・・となる 2)では、可算無限次 R^N 空間は? ユークリッド空間を単純に無次元に拡大すると、計量ベクトル空間にならない(内積が発散する) 3)普通は、R^Nの部分空間として、ヒルベルト空間などに制限して扱う(下記) 4)この視点で、「R^N →R^N/~ の切断は非可測になる」とは、なんだろう? 5)ヴィタリ集合は、実数R中に定義されたルベーグ測度に対して、非可測集合になるということ 6)そもそも、R^N 空間に、どんな測度を定義しようというのか? まず、それが大問題でしょ! 7)「R^N/~ の切断は非可測になる」には同意だが、”R^N 空間に定義する測度”をまず論じないと、数学的には無意味ですよね!ww (参考) https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93 ヒルベルト空間 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。 これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/68
105: 132人目の素数さん [] 2022/10/26(水) 12:00:32.80 ID:gBkcMulc >>104 つづき c)そこで時枝記事は、このような二つの可算無限数列の組を 100組作る。1組を問題列の組として(この決定番号をdとする)、 他の残り99個の組の決定番号の最大値を得て(これをdmax99とする) ”d<=dmax99”と出来るという d)問題列の組で、出題された列のdmax99+1番目以降の箱を開けて その属する同値類を知り、 上記a)の参照数列(同値類の代表)を知り 代表のdmax99の箱の数が、出題のdmax99の箱の数が一致するので そうなれば、dmax99の箱が的中になる e)時枝記事では、”d<=dmax99”となる確率を99/100と計算する f)問題は、このようにして得られた確率99/100が正当かどうかだ? g)>>55に書いたが 可算無限列→形式的冪級数→しっぽの同値類=多項式環という流れで 本質的に、可算無限列から無限次元 F線形空間 を扱うことになり>>47 従って、有限の値の不等式 ”d<=dmax99”は、有限次元空間の話だよ だから、無限次元内の有限次元空間の数値(次元)を使っているので、 確率99/100は条件付き確率であって、条件部分の確率は0であり 結局、全体として、0*(99/100)=0 ってことですよ まあ、大学レベルの確率論を学んでないと、 ここは難しいよね http://rio2016.5ch.net/test/read.cgi/math/1666352731/105
161: 132人目の素数さん [] 2022/10/28(金) 07:51:26.44 ID:0FiXm6H7 >>158 補足 補足しておこう 1)時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること 2)決定番号→多項式環内の多項式の次数n+1に相当することは、すでに述べた>>55 3)多項式環内の多項式の次数が非正則分布であることは明らかだ 4)非正則分布内で、100個の決定番号をとっても、ランダムサンプリング(無作為抽出)ではない 5)つまり、ここで通常の確率論ではなくなっているってことだね まあ、小学生には難しいかなw http://rio2016.5ch.net/test/read.cgi/math/1666352731/161
479: 132人目の素数さん [] 2022/11/01(火) 21:27:40.86 ID:+emxAWt1 >>467 さて 質問への回答は、>>467-468に書いたよ そこで、関連で追加の質問をします 時枝氏の記事>>1の関連>>55より https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/~; の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~; の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、過去スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. (引用終り) これで 1)”その結果R^N →R^N/~; の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである” ここの陳述で、ヴィタリ集合については、>>467-468に書いた通りだが つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/479
612: 132人目の素数さん [] 2022/11/03(木) 17:18:29.06 ID:fNTesdKc >>473-474 戻る >ヴィタリ集合 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 >ここで、重要ポイントが二つ > 1)全体集合Rにルベーグ測度が与えられていること > 2)ルベーグ可測が平行移動に不変で、ヴィタリ集合Vは非可算濃度で、Vの[-1.+1]の範囲の有理数qの平行移動で可算無限和Σλ(V)を作ること >ここは押さえておきたいね 1)>>564に記したように、時枝のような無限次元空間R^Nには、 ”ルベーグ測度のような一様測度は存在しない”(会田茂樹)という 2)時枝氏は、>>55「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 という 3)しかし、ヴィタリの非可測集合の前提である ”全体集合(今の場合 R^N) にルベーグ測度が与えられている”が、不成立だ だから、無限次元空間R^Nになんらかの測度を与えるところから始める必要ありだ 4)そして、1次元空間Rのルベーグ測度におけるヴィタリの証明における a)平行移動で測度不変 b)区間[0,1]に断面を作ったこと この二つを、無限次元空間R^Nで どう実現するのか? 5)繰り返すが、”ルベーグ測度の代替(R^N上の)”、"平行移動で測度不変"、”区間[0,1]に相当する断面は?” 最低この3つを、はっきりさせないと、「そっくりである」とは言えないよ 6)私も、R^N/~の完全代表系が、可測集合になるとは思わないがw R^Nに”ルベーグ測度のような一様測度は存在しない”(会田茂樹)を考えると 「時枝さん、何言っているの? ヴィタリそっくりであるとは言えないよ!」 と思うわけですww (要するに、数学として非可測の証明がまだ無いのです!!) http://rio2016.5ch.net/test/read.cgi/math/1666352731/612
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s