[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
516: 132人目の素数さん [] 2022/11/02(水) 12:21:00.99 ID:i6iI4IYN >>515 つづき 上記は、有限次のn 次元ユークリッド空間 Rの測度で 矩形の測度を定めている これで、n→∞を考えると 1)もし、全て(bn - an)>1 ならば、mes(I) →∞に発散する 2)一方、全て(bn - an)<1 ならば、mes(I) →0に潰れる >>236の議論に戻ると 1)多項式環の無限次元線形空間が、ある種ユークリッド空間(有限次元)の無限次元化と考えられること (引用終り) で、>>33 柳田伸太郎 名古屋大 ”形式的冪級数の空間 K[[x]] (例 1.3.8) から I = N を添字集合とする直積 K^N =Πi∈N K への写像 ψ: K[[x]] -→ K^N, Σi=0~∞ fix^i -→ (fi)i∈N は同型写像 (証明は問題 2.3.2). 例 1.3.3 より K^N は数列空間だから, 形式的冪級数の空間 K[[x]] と数列空間 K^N は同じ線形空間と見なせる事が分かる.” から、 時枝氏>>1のR^N上の可算非可算を論じるためには (それは、形式的冪級数の空間 K[[x]]を多項式空間 K[x]で割ったK[[x]]/K[x] を考えることだが>>32-33) そもそも、無限次元の上記 矩形の測度 をどう定義するかから、始めなければならない 上記のように、n→∞で発散したり、0に潰れる測度のままで良いのかどうか? の吟味から必要になるってことです http://rio2016.5ch.net/test/read.cgi/math/1666352731/516
523: 132人目の素数さん [] 2022/11/02(水) 20:57:46.83 ID:yfFXmDCT >>516 補足 >>489 より再録 (参考) http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 (愛媛大学 理学部) 2007 年数学基礎論サマースクール 静岡大学にて 2007 年 9 月 4 日~7 日 (引用終り) このP6 より 1.5 ベールの性質 関数解析の基礎にあるバナッハ空間の理論で, Baire のカテゴリー定理が重要な役割を果たすことは, 周知の とおりです. 無限次元のバナッハ空間では, 古典解析で中心的な役割を担っていた有界集合の相対コンパクト 性というユークリッド空間の特質が失われており, ルベーグ測度に相当する具合のいい測度も存在しないので, 両者に代わるツールとして Baire の理論が重要になるのです. Baire のカテゴリー定理の応用に際しては, “あ る第一類集合上の点を除いて” という言い回しが, 測度論での “ほとんどいたるところ” と同様の目的で, しば しば使われます. (引用終り) これ 全然知りませんでしたがw 無限次元になると 有限次のユークリッド空間とは、相当違うことになるみたい(当然ですがw) 特に 「ルベーグ測度に相当する具合のいい測度も存在しない」 にご注目です >>516より >そもそも、無限次元の上記 矩形の測度 をどう定義するかから、始めなければならない >上記のように、n→∞で発散したり、0に潰れる測度のままで良いのかどうか? の吟味から必要になるってことです これと符合するのかもね http://rio2016.5ch.net/test/read.cgi/math/1666352731/523
524: 132人目の素数さん [] 2022/11/02(水) 21:01:50.19 ID:84leo855 >>516 >1)もし、全て(bn - an)>1 ならば、mes(I) →∞に発散する >2)一方、全て(bn - an)<1 ならば、mes(I) →0に潰れる はい🐎🦌 大嘘 どっちも反例が存在します! 見つけられないヤツは大🐎🦌 http://rio2016.5ch.net/test/read.cgi/math/1666352731/524
556: 132人目の素数さん [] 2022/11/03(木) 09:47:08.22 ID:fNTesdKc >>553 分かってないね こういうのは、問題を対数 log に変換すれば良いんだよ えーと、こうだった >>515-516より 引用開始 http://www.math.sci.ehime-u.ac.jp/~fujita/preprints/lss07_fujita_release.pdf ルベーグ可測性にかんするソロヴェイのモデル 藤田 博司 ここでP2より 1.1 ボレル集合とその測度 まず n 次元ユークリッド空間 R n の部分集合 I で n 個の開区間の直積の形 I = (a1, b1) × (a2, b2) × ・ ・ ・ × (an, bn) になっているものを, 開矩形 (open rectangle) と呼びます. 矩形の測度は mes(I) = (b1 - a1) × (b2 - a2) × ・ ・ ・ × (bn - an) によって定めるのが妥当でしょう. 上記は、有限次のn 次元ユークリッド空間 Rの測度で 矩形の測度を定めている これで、n→∞を考えると 1)もし、全て(bn - an)> 1 ならば、mes(I) →∞に発散する 2)一方、全て(bn - an)< 1 ならば、mes(I) →0に潰れる (引用終り) 1)これで log{mes(I)} = Σ i=1~n log(bi - ai)と書ける n→∞を考えると log{mes(I)} = Σ i=1~∞ log(bi - ai) 2)ここで、あるm, log|(bm - am) から先が、早く減衰すると 総和Σは、発散せずにある値に収束する 3)その値を、sとでもしますかね これで、mes(I)=e^s となる 4)減衰の早さの条件は、 積分∫x=1~∞ 1/x が発散することを参考にして 1/xより早く減衰ってことね(正確に書くのが面倒なので、これでお茶を濁しをしますw) 5)だから、無限次元ユークリッド空間全体を扱わずに こういう扱い易い部分だけを扱うのもありかも これの類似が、ヒルベルト空間で、 Σ(ai)^2 が収束する部分に限定して扱う これで十分関数解析などができるらしい 6)でも、有限次元ユークリッド空間でのルベーグ測度は そのままでは、 無限次元ユークリッド空間全体に拡張しても面白くないってこと (>>523 藤田 博司 ”無限次元のバナッハ空間では・・ルベーグ測度に相当する具合のいい測度も存在しないので・・”ってことだよ)>>526 http://rio2016.5ch.net/test/read.cgi/math/1666352731/556
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s