[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
511: 132人目の素数さん [] 2022/11/02(水) 11:15:36.79 ID:i6iI4IYN >>509 >>>506 >>いま元々はヴィタリの非可測性の話で、 >>{0}は測度0と解せられる > {0}は測度0だが、{0}という言葉が測度0を指してる筈 > と言うなら日本語の文章読めてない 逆だろw あんたは、数学オチコボレ >>506より >>473 >>ヴィタリの非可測集合が、任意の実数ε>0について、[0,ε)の部分集合となるように取れることは理解していますか? >>にもかかわらず、ヴィタリの非可測集合は、 >>決して、{0}に出来ない理由を説明できますか? (引用終り) 1)コンテキスト(文脈)として、集合の可測非可測を論じていた 2)ヴィタリの非可測集合>>473は、元はR/Qの完全代表を区間[0,1]内にとったもの 区間[0,1]→任意の実数ε>0について、[0,ε)の部分集合となるように取れる>>473 3)”にもかかわらず、ヴィタリの非可測集合は、決して、{0}に出来ない理由を説明できますか?”>>473だよ さて、当たり前の話だが、もし この{0}を零集合(ルベーグ測度0の集合)の意味に解さなければ、問自身が無意味だ (例えば、[0,ε)の部分集合として、二つの有理数q1,q2∈Q からなる二点集合{q1,q2}(q1≠q2)を考える q1=0とすると、q1≠q2よりq2≠0で、二つの有理数q1,q2∈Q の二点集合{q1,q2}(q1≠q2)は、1点区間{0}に出来ない ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの有理数r1,r2∈R の2点集合でも全く同様)) 4)だから、当然{0}=零集合(ルベーグ測度0)(下記)と解するべきです そして、ヴィタリの非可測集合Vが、零集合(ルベーグ測度0)でないことは、>>473-474に示した (参考) https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論 完備性 可測集合 S が μ(S) = 0 であるとき零集合 (null set) という。測度 μ が完備 (complete) であるとは、零集合の全ての部分集合が可測であることである http://rio2016.5ch.net/test/read.cgi/math/1666352731/511
512: 132人目の素数さん [] 2022/11/02(水) 11:42:17.56 ID:i6iI4IYN >>511 訂正と補足 訂正 (二つの有理数r1,r2→二つの実数r1,r2) ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの有理数r1,r2∈R の2点集合でも全く同様)) ↓ ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの実数r1,r2∈R の2点集合でも全く同様)) 補足 区間[0,ε)内にとったヴィタリ集合が非可測集合になることは >>473-474で、1→εに変換すれば、全く同様に証明できる つまり、区間[0,1]→[0,ε] (面倒なので閉区間にします。非可測性には影響しないので) として、有理数の数え上げを、区間[-ε,+ε]として、この区間内の全ての有理数を数え上げる (このヴィタリ集合をV、区間[-ε,+ε]内の有理数をqi∈[-ε,+ε]とする。qiは可算濃度のこころ) >>474と同様に 集合の包含関係 [0,+ε]⊂= ∪i(V+qi)⊂=[-ε,+2ε] が成立 λ(V)と仮定する (λ(V)は、Vのルベーグ測度 >>474) 上記から ε<=Σi λ(V+qi)<=3ε であり、λ(V+qi)=λ(V)だから よって、ルベーグ測度λ(V)の可算無限和が、ε以上で3ε以下(ε≠0)となること が導かれるが、これは λ(V)が0、有限、∞のいずれの値もとることが出来ないことを意味する (詳しくは下記など) QED (参考) https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 構成と証明 略 http://rio2016.5ch.net/test/read.cgi/math/1666352731/512
513: 132人目の素数さん [sage] 2022/11/02(水) 11:53:46.14 ID:lta4i042 >>511 >もし この{0}を零集合(ルベーグ測度0の集合)の意味に解さなければ、問自身が無意味だ >(例えば、[0,ε)の部分集合として、二つの有理数q1,q2∈Q からなる二点集合{q1,q2}(q1≠q2)を考える > q1=0とすると、q1≠q2よりq2≠0で、 > 二つの有理数q1,q2∈Q の二点集合{q1,q2}(q1≠q2)は、1点区間{0}に出来ない > ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの有理数r1,r2∈R の2点集合でも全く同様)) だろ?自明だから意味が無いとは言えない 自明だと説明できた瞬間、意味があったと証明されたw http://rio2016.5ch.net/test/read.cgi/math/1666352731/513
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.042s