[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
480: 132人目の素数さん [] 2022/11/01(火) 21:28:39.58 ID:+emxAWt1 >>479 つづき 2)このヴィタリの非可測証明とパラレルに考えると a)”1)全体集合Rにルベーグ測度が与えられていること”>>474 について、相当するR^Nのルベーグ測度は何だろう? あなたは、”>>438は単なる積測度の定義 数学科の学生なら必修”>>442 だったね Rのルベーグ測度の直積を作れば、即 R^Nのルベーグ測度になるのかな? b)”2)ルベーグ可測が平行移動に普遍で、ヴィタリ集合Vは非可算濃度で、Vの[-1.+1]の範囲の有理数qの平行移動で可算無限和Σλ(V)を作ること”>>474 について、R^N/~がR/Qとパラレルにできる? つまり、"/Q"に相当する元がR^N中に取れる? さらに、断面[0,1]はどうか? [0,1]^Nかね? まさかねw 商は、"/Q"ではなく"/~"だよね。そして、”[-1.+1]の範囲の有理数qの平行移動”はどうする? ”可算無限和Σλ(V)”に相当する部分はどこなのか? ここらを曖昧にして、腰だめで、時枝氏は”そっくりである”と書いているよね(突っ込みどころ満載だけど) 勿論、私も可測になるとは思わないけどw この記述は、時枝トリックの”目くらまし”としか思えない記述*)なので、聞いているのですが (注*)”選択公理→いかにも不思議な定理が成立”の雰囲気づくりのためにw) どう思います? http://rio2016.5ch.net/test/read.cgi/math/1666352731/480
481: 132人目の素数さん [] 2022/11/01(火) 21:38:10.31 ID:Hdk0OAq+ >>480 >”Q"に相当する元がR^N中に取れる? ああ、もちろんとれる いままで気づかんかったのか それが∪R^n(n∈N)な http://rio2016.5ch.net/test/read.cgi/math/1666352731/481
487: 132人目の素数さん [] 2022/11/02(水) 00:08:15.59 ID:yfFXmDCT >>480 補足 >勿論、私も可測になるとは思わないけどw >この記述は、時枝トリックの”目くらまし”としか思えない記述*)なので、聞いているのですが >(注*)”選択公理→いかにも不思議な定理が成立”の雰囲気づくりのためにw) <補足> 1)選択公理について、Sergiu Hart氏が、下記”without using the Axiom of Choice”で、 類似のgame2を考えている(全てが可算の範囲でゲームが行われる) 2)だから、(フルパワー)選択公理を使わないので 非可測集合は出てこない(多分) 3)よって、”選択公理→非可測集合”の議論は、 時枝記事のトリック解明上の本質ではないってことですね 4)だから、時枝についての非可測集合の確率論の議論は、無意味です (参考) >>2より http://www.ma.huji.ac.il/hart/puzzle/choice.pdf? Choice Games November 4, 2013 Sergiu Hart P2 A similar result, but now without using the Axiom of Choice. Consider the following two-person game game2: Theorem 2 For every ε > 0 Player 2 has a mixed strategy in game2 guaranteeing him a win with probability at least 1 - ε. http://rio2016.5ch.net/test/read.cgi/math/1666352731/487
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s