[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
473: 132人目の素数さん [] 2022/11/01(火) 18:58:26.05 ID:25yibjh9 >>467 >私からも質問していいですか? いいよ >QⅠ.ヴィタリの非可測集合の構成とそれが非可測である証明は理解していますか? Yes >QⅡ.ヴィタリの非可測集合が、任意の実数ε>0について、[0,ε)の部分集合となるように取れることは理解していますか? Yes (蛇足だが、εは微小数のイメージだが、逆にいくらでも大きな数mで[0,m)とできる) (もし、εやmが無理数なら、[0,ε],[0,m](閉区間)とできる) >QⅢ. にもかかわらず、ヴィタリの非可測集合は、決して、{0}に出来ない理由を説明できますか? それは、https://en.wikipedia.org/wiki/Vitali_set に詳しい解説がある(この話は過去に書いているよ) 概略は下記(なお、厳密な定義や説明が、面倒なので記号の濫用をします) 1)非可測の前段として、ルベーグ可測が定義される(ここは ヴィタリ集合 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 に詳しい説明がある) 2)R/Qを考える (ヴィタリ集合に説明があるので省略) 3)R/Qの代表系を区間[0,1]にとる いま、ヴィタリ集合Vとして、無理数v∈Vを考える [0,1]の範囲の有理数qで、v+qやv-q' を考える (ここに 0<q<1-v,-v<q<0, つまり[-v,1-v]の範囲の有理数qでv+qは、代表に取れない v+q not∈V) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/473
474: 132人目の素数さん [] 2022/11/01(火) 18:59:08.91 ID:25yibjh9 >>473 つづき 4)ヴィタリ氏は上記を逆手にとって、[-1.+1]の範囲の有理数qを全て集めて、∪V+qを作る ∪V+q を考えると、これは[-1,2]の範囲に収まる。一方で、∪V+q は上記の考察から、区間[0,1]の全ての実数を含む つまり[0.1]⊂∪V+q 5)いま、λ(S)を集合Sにルベーグ測度を与える関数とする(上記wikipedia通り) λ(∪V+q)=Σλ(V) で (なお、Σは、[-1.+1]の有理数qを全て数え上げて(可算無限)和を取る) よって 1<=Σλ(V)<=3 (<=3は[-1,2]の範囲に収まることから、1<=は内部に区間[0,1]の全ての実数を含むことから従う) 6)これは、λ(V)に0、有限、∞のいかなる値を付与しても矛盾。よって、λ(V)にはいかなる値(測度)も与えることができず、非可測集合を成す ここで、重要ポイントが二つ 1)全体集合Rにルベーグ可測が与えられていること 2)ルベーグ可測が平行移動に普遍で、ヴィタリ集合Vは非可算濃度で、Vの[-1.+1]の範囲の有理数qの平行移動で可算無限和Σλ(V)を作ること ここは押さえておきたいね なお、ソロベイの有名な可算理論モデルがあるが、上記ポイントの2)のどこかが成り立たないのでしょうね(詳しくないが) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/474
476: 132人目の素数さん [sage] 2022/11/01(火) 19:41:47.16 ID:Hdk0OAq+ >>473 >>Q?. にもかかわらず、ヴィタリの非可測集合は、 >>決して、{0}に出来ない理由を説明できますか? >それは、https://en.wikipedia.org/wiki/Vitali_set に詳しい解説がある そう思ってるなら、全然wikipediaの文章が読めてませんね 全く解説してませんから >(この話は過去に書いているよ) 過去に書いたことは、全く見当違いの誤りってことですね ヴィタリ集合はいくらでも小さくできるが 一方で非可算個の元が必要 したがって0という一点には潰せない 箱入り無数目の代表列の集合も同じこと 頭の部分の0の項の長さをいくらでも長くできるが 無限長の0ばかりの列だけにすることはできない 「決定番号∞」とかいうのは「代表列がただ1列」なら正しいが その場合の同値関係の定義は、元の箱入り無数目と違ってる つまり「任意の列について、頭の部分を好きなだけ0に置き換えた列が同値なら 全部を0に置き換えた列とも同値」とかいう「コーシー定義」を追加しちゃってる そんな追加条件はないんだよ 大学で数学学んだヒトならわかる 大学に入ったことがない🐎🦌は死ぬまで決して理解できないだろうけどね 哀れだね 人間になれない🐒は http://rio2016.5ch.net/test/read.cgi/math/1666352731/476
506: 132人目の素数さん [] 2022/11/02(水) 07:56:04.80 ID:yfFXmDCT >>502 >いいたいことは、 >「区間長を任意のε>0に設定できる⇒区間長を0にできる」 >というのは誤りだ、ということです 違うだろ?w >>476より >>473 >>QⅢ. にもかかわらず、ヴィタリの非可測集合は、 >>決して、{0}に出来ない理由を説明できますか? >それは、https://en.wikipedia.org/wiki/Vitali_set に詳しい解説がある そう思ってるなら、全然wikipediaの文章が読めてませんね 全く解説してませんから >(この話は過去に書いているよ) 過去に書いたことは、全く見当違いの誤りってことですね ヴィタリ集合はいくらでも小さくできるが 一方で非可算個の元が必要 したがって0という一点には潰せない (引用終り) だった あなたが言ったことは、 ”ヴィタリの非可測集合は、決して、{0}に出来ない理由を説明できますか?” に対して ”ヴィタリ集合はいくらでも小さくできるが 一方で非可算個の元が必要 したがって0という一点には潰せない” と言った つまり、非可算個の元→一点には潰せない→{0}に出来ない ってこと で、いま元々はヴィタリの非可測性の話で、{0}は測度0と解せられる (補足:{0}は測度0と解さないと、 数直線上の整数Zの点は、”1点に潰せる”のか? 数直線上の有理数Qの点は、”1点に潰せる”のか?>>489 となってしまう。ルベーグ測度では、可算集合の測度は0だが、整数Z有理数Qとも、一点には潰せないよ) 非可算個の元→一点には潰せないから、測度0にならないのか? 反例がある。それが、>>485に示した カントール集合:”ルベーグ測度は 0 でありながら、濃度は実数に等しい集合(連続体濃度の非可算集合)として有名な例である” カントール集合も当然一点には潰せないし、連続体濃度の非可算集合だが、ルベーグ測度は 0 だよ http://rio2016.5ch.net/test/read.cgi/math/1666352731/506
511: 132人目の素数さん [] 2022/11/02(水) 11:15:36.79 ID:i6iI4IYN >>509 >>>506 >>いま元々はヴィタリの非可測性の話で、 >>{0}は測度0と解せられる > {0}は測度0だが、{0}という言葉が測度0を指してる筈 > と言うなら日本語の文章読めてない 逆だろw あんたは、数学オチコボレ >>506より >>473 >>ヴィタリの非可測集合が、任意の実数ε>0について、[0,ε)の部分集合となるように取れることは理解していますか? >>にもかかわらず、ヴィタリの非可測集合は、 >>決して、{0}に出来ない理由を説明できますか? (引用終り) 1)コンテキスト(文脈)として、集合の可測非可測を論じていた 2)ヴィタリの非可測集合>>473は、元はR/Qの完全代表を区間[0,1]内にとったもの 区間[0,1]→任意の実数ε>0について、[0,ε)の部分集合となるように取れる>>473 3)”にもかかわらず、ヴィタリの非可測集合は、決して、{0}に出来ない理由を説明できますか?”>>473だよ さて、当たり前の話だが、もし この{0}を零集合(ルベーグ測度0の集合)の意味に解さなければ、問自身が無意味だ (例えば、[0,ε)の部分集合として、二つの有理数q1,q2∈Q からなる二点集合{q1,q2}(q1≠q2)を考える q1=0とすると、q1≠q2よりq2≠0で、二つの有理数q1,q2∈Q の二点集合{q1,q2}(q1≠q2)は、1点区間{0}に出来ない ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの有理数r1,r2∈R の2点集合でも全く同様)) 4)だから、当然{0}=零集合(ルベーグ測度0)(下記)と解するべきです そして、ヴィタリの非可測集合Vが、零集合(ルベーグ測度0)でないことは、>>473-474に示した (参考) https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論 完備性 可測集合 S が μ(S) = 0 であるとき零集合 (null set) という。測度 μ が完備 (complete) であるとは、零集合の全ての部分集合が可測であることである http://rio2016.5ch.net/test/read.cgi/math/1666352731/511
512: 132人目の素数さん [] 2022/11/02(水) 11:42:17.56 ID:i6iI4IYN >>511 訂正と補足 訂正 (二つの有理数r1,r2→二つの実数r1,r2) ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの有理数r1,r2∈R の2点集合でも全く同様)) ↓ ヴィタリの非可測集V(非可算濃度)が、1点区間{0}に出来ないことは、自明も自明(二つの実数r1,r2∈R の2点集合でも全く同様)) 補足 区間[0,ε)内にとったヴィタリ集合が非可測集合になることは >>473-474で、1→εに変換すれば、全く同様に証明できる つまり、区間[0,1]→[0,ε] (面倒なので閉区間にします。非可測性には影響しないので) として、有理数の数え上げを、区間[-ε,+ε]として、この区間内の全ての有理数を数え上げる (このヴィタリ集合をV、区間[-ε,+ε]内の有理数をqi∈[-ε,+ε]とする。qiは可算濃度のこころ) >>474と同様に 集合の包含関係 [0,+ε]⊂= ∪i(V+qi)⊂=[-ε,+2ε] が成立 λ(V)と仮定する (λ(V)は、Vのルベーグ測度 >>474) 上記から ε<=Σi λ(V+qi)<=3ε であり、λ(V+qi)=λ(V)だから よって、ルベーグ測度λ(V)の可算無限和が、ε以上で3ε以下(ε≠0)となること が導かれるが、これは λ(V)が0、有限、∞のいずれの値もとることが出来ないことを意味する (詳しくは下記など) QED (参考) https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 構成と証明 略 http://rio2016.5ch.net/test/read.cgi/math/1666352731/512
612: 132人目の素数さん [] 2022/11/03(木) 17:18:29.06 ID:fNTesdKc >>473-474 戻る >ヴィタリ集合 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 >ここで、重要ポイントが二つ > 1)全体集合Rにルベーグ測度が与えられていること > 2)ルベーグ可測が平行移動に不変で、ヴィタリ集合Vは非可算濃度で、Vの[-1.+1]の範囲の有理数qの平行移動で可算無限和Σλ(V)を作ること >ここは押さえておきたいね 1)>>564に記したように、時枝のような無限次元空間R^Nには、 ”ルベーグ測度のような一様測度は存在しない”(会田茂樹)という 2)時枝氏は、>>55「R^N/~ の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~ の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 という 3)しかし、ヴィタリの非可測集合の前提である ”全体集合(今の場合 R^N) にルベーグ測度が与えられている”が、不成立だ だから、無限次元空間R^Nになんらかの測度を与えるところから始める必要ありだ 4)そして、1次元空間Rのルベーグ測度におけるヴィタリの証明における a)平行移動で測度不変 b)区間[0,1]に断面を作ったこと この二つを、無限次元空間R^Nで どう実現するのか? 5)繰り返すが、”ルベーグ測度の代替(R^N上の)”、"平行移動で測度不変"、”区間[0,1]に相当する断面は?” 最低この3つを、はっきりさせないと、「そっくりである」とは言えないよ 6)私も、R^N/~の完全代表系が、可測集合になるとは思わないがw R^Nに”ルベーグ測度のような一様測度は存在しない”(会田茂樹)を考えると 「時枝さん、何言っているの? ヴィタリそっくりであるとは言えないよ!」 と思うわけですww (要するに、数学として非可測の証明がまだ無いのです!!) http://rio2016.5ch.net/test/read.cgi/math/1666352731/612
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s