[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
468: 132人目の素数さん [] 2022/11/01(火) 16:55:06.43 ID:25yibjh9 さて、スレ主です 1) >>443 について、>>463にも書いたけど https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ Infinite Products of Probability Spaces J.P. McCarthy: Math Page より ”In proving such limit theorems, it is useful to be able to construct a probability space on which a sequence of independent random variables is defined in a natural way; specifically, as coordinates for a countable Cartesian product.” の”a sequence of independent random variables”とあることに気付いたかな? ”independent”だったら、他の箱を開けても、問題の箱の確率は不変ですよね?!!w 2) >>462 >・ iid 確率変数 X_i∈[0,1] (各X_iは[0,1]上の一様分布を実現) >の存在性を担保する確率空間こそが ([0,1]^N, F_N, μ_N) なのに そうその通りだろうね!w だけど、上記の通り”a sequence of independent random variables”だよ ”independent”だったら、他の箱を開けても、問題の箱の確率は不変ですよ?w つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/468
469: 132人目の素数さん [] 2022/11/01(火) 16:55:30.79 ID:25yibjh9 >>468 つづき 3) さて、そもそもの>>386で >>384-385より >>d:[0,1]^N → N は決定番号の写像であり、(d≦k) は非可測なので矛盾する。 > え、その証明はしないの? (引用終り) に戻る 確率空間の事象として、下記の Sergiu Hart氏 P2 Remark で、 Player 1 ”with probability 1 in game1”、”the xi independently and uniformly on [0, 1]”を採用しよう ”Ω = Π[n=1~∞]Ω_n = [0,1]×[0,1]×[0,1]×[0,1]×… (=[0,1]^N)”>>444 だったよね? Player 1の立場で、[0,1]→1(下記より。なお、Player 2の立場では[0,1]→0)となるよね 従って 下記類似設定では、”[1]×[1]×[1]×[1]×… (=[1]^N)”となるよね(Player 2の立場では、”[0]×[0]×[0]×[0]×… (=[0]^N)”) つまりは、”[1]×[1]×[1]×[1]×… (=[1]^N)”なるただ一つの元から d:[1]^N → N は決定番号の写像を作ることになる ここで、写像の値域Nが複数の値をとるならば、多価でしょ? この多価性をどうするの?w (くどいが、Player 2の立場では、”[0]×[0]×[0]×[0]×… (=[0]^N)”ですが) (参考) >>2 >>387 http://www.ma.huji.ac.il/hart/puzzle/choice.pdf Choice Games November 4, 2013 Sergiu Hart P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively. http://rio2016.5ch.net/test/read.cgi/math/1666352731/469
479: 132人目の素数さん [] 2022/11/01(火) 21:27:40.86 ID:+emxAWt1 >>467 さて 質問への回答は、>>467-468に書いたよ そこで、関連で追加の質問をします 時枝氏の記事>>1の関連>>55より https://rio2016.5ch.net/test/read.cgi/math/1620904362/404 さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/~; の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/~; の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、過去スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. (引用終り) これで 1)”その結果R^N →R^N/~; の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである” ここの陳述で、ヴィタリ集合については、>>467-468に書いた通りだが つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/479
488: 132人目の素数さん [sage] 2022/11/02(水) 00:16:40.69 ID:VMeEIdTW >>468 > ”independent”だったら、他の箱を開けても、問題の箱の確率は不変ですよね?!!w 「ランダム時枝ゲームで回答者が勝利する」という事象を A とするとき、 A は非可測であることを既に証明した。特に、P(A) が定義できない。言い換えれば、 「焦点となっている箱の中身の推測に成功する確率」 は定義できない。この確率が定義できないので、「回答者の勝率はゼロ」は成立しない。 「Aが非可測なんてウソだ。Aは可測だ」 と主張するのなら、P(A)=P^*(A)≧99/100 すなわち P(A)≧99/100 となるので、 「ランダム時枝ゲームで回答者が勝利する確率は 99/100 以上」になる。 いずれにしても、「回答者の勝率はゼロ」は成立しない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/488
507: 132人目の素数さん [] 2022/11/02(水) 08:03:52.10 ID:yfFXmDCT >>501 >・ 回答者がそんな戦術を使ってしまったら、出題者の iid は崩れ去る。 意味わかんないけど? 1)時枝記事>>1で、可算無限個の箱があり、実数Rの元を入れる そして、ある一つの箱を残して、他の箱を全部開ける 現代数学の確率論の扱いとして、この一つの箱と他の箱とは、 独立(”a sequence of independent random variables”>>468) と考えることができる 2)最後の一つの箱を開ければ、 箱の中の実数を知ることができ 確率論ではなくなる それだけのことでしょ?w http://rio2016.5ch.net/test/read.cgi/math/1666352731/507
508: 132人目の素数さん [] 2022/11/02(水) 08:18:20.81 ID:KzN6IiUS >>507 >現代数学の確率論の扱いとして、この一つの箱と他の箱とは、 > 独立(”a sequence of independent random variables”>>468) > と考えることができる 未だ分かっとらんかったんかい。頭悪いのうお主。 扱えることと扱うことは違う。時枝戦略は扱っていない。 時枝戦略に反論したいなら時枝戦略を語れ。関係無い話を語っても何の反論にもならない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/508
532: 132人目の素数さん [] 2022/11/02(水) 23:42:19.10 ID:yfFXmDCT >>527 >ランダム時枝ゲームの話をしていて、そこでは [0,1] が主役なのだから、 >文脈上、当然ながら[0,1]のピンポイント的中のことを言っているのである。 ちがう ・[0,1] が主役なのは、>>2のSergiu Hart氏のRemark game1の話だ ・時枝>>1では、(-∞、+∞)∈R つまり、実数ならなんでもありの話だ ・細かいが、別だよ >しかし、実際には非可測なので確率が定義できない。よって、「回答者の勝率はゼロ」は不成立。 これも違う 非可測ではない これは、あなたが証明した通りだろうし(読んでないけどなw) あなたが>>443で紹介した J.P. McCarthy ”Infinite Products of Probability Spaces” https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ >>468 にあるように、無限積の確率空間に対して確率測度を与えられるよ つまり、非可測ではない また、確率を定義できる http://rio2016.5ch.net/test/read.cgi/math/1666352731/532
537: 132人目の素数さん [sage] 2022/11/03(木) 00:17:12.61 ID:7Xhr0F/H >>532 >これも違う >非可測ではない >これは、あなたが証明した通りだろうし(読んでないけどなw) >あなたが>>443で紹介した >J.P. McCarthy ”Infinite Products of Probability Spaces” > https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ >>468 >にあるように、無限積の確率空間に対して確率測度を与えられるよ >つまり、非可測ではない >また、確率を定義できる 言ってることが滅茶苦茶。全く意味が繋がっていない。 無限直積 確率空間を今まで知らなかった人間が慣れない発言をするから、 こういうところでボロが出るのである。話にならない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/537
540: 132人目の素数さん [sage] 2022/11/03(木) 00:29:12.25 ID:7Xhr0F/H 以上を踏まえた上で、スレ主の発言を見てみる。 >あなたが>>443で紹介した >J.P. McCarthy ”Infinite Products of Probability Spaces” > https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ >>468 >にあるように、無限積の確率空間に対して確率測度を与えられるよ >つまり、非可測ではない >また、確率を定義できる これ、完全に支離滅裂。まず、今回の無限直積 確率空間 ([0,1]^N,F_N,μ_N) は、 上記のリンク先に従って正式に構成可能である。 つまり、無限積の確率空間に対して確率測度 μ_N が実際に定義できている。ここでスレ主は、 >つまり、非可測ではない と言っているが、意味不明で支離滅裂である。μ_N が定義できたからといって、 A = { (s,i)∈Ω|d(s^{i})≦max{d(s^{j})|1≦j≦100, j≠i } } という集合が「非可測ではない」ことにはならないw そもそも、A は無限直積 確率空間 ([0,1]^N,F_N,μ_N) の中で定義される集合ですらない。 A は別の確率空間(Ω,F,P)の中で定義される集合である。この時点で既に、スレ主は盛大に何かを勘違いしている。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/540
551: 132人目の素数さん [] 2022/11/03(木) 08:12:14.58 ID:fNTesdKc >>537 >言ってることが滅茶苦茶。全く意味が繋がっていない。 >無限直積 確率空間を今まで知らなかった人間が慣れない発言をするから、 >こういうところでボロが出るのである。話にならない。 笑える そっくりお返しするよ 1)時枝氏の記事に >>282-283より ”確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である.” ”n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか--他の箱から情報は一切もらえないのだから.” とある つまりは この独立な確率変数の無限族=J.P. McCarthy ”Infinite Products of Probability Spaces”>>532 ってことですよ さらに付言すれば、>>468より ”In proving such limit theorems, it is useful to be able to construct a probability space on which a sequence of independent random variables is defined in a natural way; specifically, as coordinates for a countable Cartesian product.” の”a sequence of independent random variables”とあることに気付いたかな? ”independent”だったら、他の箱を開けても、問題の箱の確率は不変ですよね?!!w (引用終り) ってことです X1,X2,X3,・・・がまるまる無限族として独立=”a sequence of independent random variables” なのです (”当てられっこないではないか--他の箱から情報は一切もらえないのだから.”が成立) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/551
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s