[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
413: 132人目の素数さん [sage] 2022/10/31(月) 23:06:34.13 ID:V6kL7bYX 補足:以下では、有限個の k に対して (d≦k) が可測になる例を挙げておく。 U={s∈[0,1]^N|s_0=s_1=s_2=0 } = {0}^3[0,1]^N と置く。[0,1]^N 上の同値関係 〜 をU上に導入すれば、〜 はそのまま U 上の同値関係になる。 U の〜に関する完全代表系を1つ取って T_0 と置くと、これは [0,1]^N 上の〜に関する 完全代表系にも なっていることが確かめられる。 この T_0 から決定番号の写像 d:[0,1]^N → N∪{0} を作った場合には、 (d≦k)∩[0,1)^N = [0,1)^k(T_0^[k]∩[0,1)^N) (k≧1) をk=2に対して適用すれば、 (d≦2)∩[0,1)^N = [0,1)^2(T_0^[2]∩[0,1)^N) ⊂ T_0^[2] ⊂ U^[2] = {0}[0,1)^N なので、μ_{Nw}^*((d≦2)∩[0,1)^N) ≦ μ_{Nw}^*({0}[0,1]^N) = 0 であり、 よってμ_{Nw}^*(d≦2)=0 であり、完備性により (d≦2)∈F_{Nw} かつ μ_{Nw}(d≦2)=0 となる。 すなわち、(d≦2) は可測となる。(d≦0) ⊂ (d≦1) ⊂ (d≦2) 及び完備性により、 (d≦0),(d≦1)∈F_{Nw} かつ μ_{Nw}(d≦0)=0, μ_{Nw}(d≦1)=0 となる。 よって、この T_0 の場合では、(d≦k) は k=0,1,2 に対して可測となる。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/413
439: 132人目の素数さん [] 2022/11/01(火) 01:12:37.15 ID:Hdk0OAq+ ID:V6kL7bYX=ID:sIOgpcGr さすが「数学博士」 見事な証明だ しかも、任意のnについて 有限個の k≦n に対して (d≦k) が可測になる具体例>>413 まで示してくれた この具体例では、結局、頭の有限個の項だけ全部0にすることで (d≦k) の測度を0にできるが、無限個全部を0にしてしまうと どの代表も「全部0の列」になってしまって違いがなくなる ということになる ま、中卒は 「実はすべての列が、全部0の列と同値になるから、 ほとんどすべての列で決定番号∞なのだよ」 とか馬鹿丸出しのことをいうだろうが、 それは全くの初歩的誤りだから嘲笑されるだけである http://rio2016.5ch.net/test/read.cgi/math/1666352731/439
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s