[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
411: 132人目の素数さん [sage] 2022/10/31(月) 23:03:42.41 ID:V6kL7bYX 今の時点で、 ・ μ_N^*(d≦k) = μ_N^*(T^[k]), μ_{N*}(d≦k) = μ_{N*}(T^[k]), ・ lim[k→∞] μ_N^*(T^[k]) = 1, μ_{N*}(T^[k])=0 (k≧0) が得られている。特に、ある k_0≧1 が存在して、k≧k_0 のとき μ_N^*(T^[k]) > 0 である。 よって、μ_N^*(T^[k]) > μ_{N*}(T^[k]) (∀k≧k_0) である。すなわち、 μ_N^*(d≦k) > μ_{N*}(d≦k) (∀k≧k_0) である。([0,1]^N, F_N, μ_N) の完備化 ([0,1]^N, F_{Nw}, μ_{Nw}) について、 >>392の定理により μ_{Nw}^* = μ_N^*, μ_{Nw*} = μ_{N*} だから、 μ_{Nw}^*(d≦k) > μ_{Nw*}(d≦k) (∀k≧k_0) である。>>392の定理により、¬((d≦k) ∈ F_{Nw}) (∀k≧k_0) である。 すなわち、(d≦k) は k≧k_0 のとき非可測である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/411
421: 132人目の素数さん [sage] 2022/10/31(月) 23:13:04.88 ID:V6kL7bYX D(u,v)= max{ d(u^{0}),…,d(u^{98}), d(v) } だから、 ∀v∈[0,1]^N−M_1 s.t. d(u^{0})≦k_0−1, d(u^{1})≦k_0−1,…, d(u^{98})≦k_0−1, d(v)≦k_0−1 ということになる。特に、 ∀v∈[0,1]^N−M_1 s.t. d(v)≦k_0−1 である。これは [0,1]^N−M_1 ⊂ (d≦k_0−1) を意味する。 特に、μ_{Nw}^*([0,1]^N−M_1) ≦ μ_{Nw}^*(d≦k_0−1) が成り立つ。 すなわち、1≦μ_{Nw}^*(d≦k_0−1) である。一方で、>>411で見たように μ_{Nw*}(d≦k)=0 (∀k≧0) なので、特に μ_{Nw*}(d≦k_0−1)=0 である。よって、 μ_{Nw*}(d≦k_0−1) < μ_{Nw}^*(d≦k_0−1) となったので、(d≦k_0−1) は非可測である。しかし、k_0の最小性から、(d≦k_0−1) は可測なので矛盾。 以上により、α_99^*(D≧k_0)>0 である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/421
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s