[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
402: 132人目の素数さん [sage] 2022/10/31(月) 22:52:44.04 ID:V6kL7bYX 今の段階で、μ_N^*(A) ≦∫_{ [0,1]^N } 1_B(x,y) dμ_N(y) が x∈[0,1) に対して言えている。 両辺を通常の1次元ルベーグ測度空間 ([0,1],F_1,μ_1) において x∈[0,1) で積分する。 すると、左辺は μ_N^*(A) のままであり、右辺はフビニの定理が使えて、 μ_N^*(A) ≦∫_{ [0,1) } ∫_{ [0,1]^N } 1_B(x,y) dμ_N(y) dμ_1(x) = ∫_{ [0,1] } ∫_{ [0,1]^N } 1_B(x,y) dμ_N(y) dμ_1(x) =∫_{ [0,1]×[0,1]^N } 1_B(x,y) d(μ_1×μ_N)(x,y) =∫_{ [0,1]^N } 1_B(z) d(μ_N)(z) =μ_N(B) である。よって、μ_N^*(A) ≦μ_N(B) となった。[0,1)A ⊂ B ∈ F_N なる B は任意だったから、 そのような B での inf を取れば、μ_N^*(A) ≦μ_N^*([0,1)A) である。 以上により、μ_N^*(A)=μ_N^*([0,1)A) である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/402
431: 132人目の素数さん [] 2022/10/31(月) 23:57:37.03 ID:vpuiD3x9 >>402 >今の段階で、μ_N^*(A) ≦∫_{ [0,1]^N } 1_B(x,y) dμ_N(y) が x∈[0,1) に対して言えている。 >両辺を通常の1次元ルベーグ測度空間 ([0,1],F_1,μ_1) において x∈[0,1) で積分する。 >すると、左辺は μ_N^*(A) のままであり、右辺はフビニの定理が使えて、 意味わからんけど 1)そもそも、[0,1]^Nで、1辺a 0<a<1 の超立体の体積を考える 2次元ならa^2,3次元ならa^3,・・,n次元ならa^n,・・・ なので、n→∞のとき 常にa^n→0だよね(∵ 0<a<1 ) 2)一方で、無限次ベクトル (a,a,・・,a,・・)を考えると このベクトルの長さLは、通常の成分の2乗を開平だとして L=√(Σn=1~∞ a^2)→∞ (∵ a≠0 )つまり発散するよ 3)だから、[0,1]^Nの空間に計量を入れて扱おうとするならば、 通常の1次元ルベーグ測度 [0,1] とは、違う測度にしないと、どうにもならん気がするけど? だからのヒルベルト空間でしょ? (最初から、ベクトルの長さが定義できる素性の良いところに限定するんだよ) 4)そもそも、下記ヴィタリ集合の非可測性は、 実数Rに与えられたルベーグ測度をベースに論じて その上で非可測性を示すよね 5)だから、無限次元の[0,1]^Nに対して、 どういう測度を与えるのか? そこをしっかりしないと、上滑りの”可測、非可測”の議論になるよ (参考) https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 可測集合 集合には '長さ' や '重さ' が定まるものがある。例えば、区間 [0, 1]は長さ1を持つと思われる。 重さに最も近い一般化はσ-加法性を持つルベーグ測度である。 構成と証明 これは不可能である。一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない。すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4]。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/431
434: 132人目の素数さん [sage] 2022/11/01(火) 00:10:10.22 ID:sIOgpcGr では、>>399は丸ごと削除し、そして>399の性質を使っている唯一の>>404を証明し直す。 そのやり方は、>>400, >>402と全く同じ方法でよかった。 A⊂[0,1)^N を任意に取る。μ_{N*}([0,1)A)=μ_{N*}(A) を示したい。 A⊃B∈F_N なる B を任意に取れば、[0,1)A ⊃ [0,1)B∈F_N なので、 μ_{N*}([0,1)A) ≧ μ_{N*}([0,1)B)=μ_N([0,1)B)=μ_N(B) である。 A⊃B∈F_N なる B は任意だったから、そのような B の sup を取れば、 μ_{N*}([0,1)A)≧μ_N^*(A) となる。次に、[0,1)A ⊃ B ∈ F_N なる B を任意に取る。 x∈[0,1) を任意に取って、x での断面を考えれば、( [0,1)A )_x ⊃ B_x である。 ( [0,1)A )_x = A なので、A ⊃ B_x である。さらに、B∈F_N により B_x∈F_N である。 よって、μ_{N*}(A)≧μ_{N*}(B_x)=μ_N(B_x)である。これが任意の x∈[0,1) で言える。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/434
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s