[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
400: 132人目の素数さん [sage] 2022/10/31(月) 22:47:47.22 ID:V6kL7bYX 定理:任意の A⊂[0,1)^N に対して、μ_N^*([0,1)A)=μ_N^*(A) かつ μ_{N*}([0,1)A)=μ_{N*}(A) である。 証明:A⊂[0,1)^N を任意に取る。μ_N^*([0,1)A)=μ_N^*(A) を示す。 A⊂B∈F_N なる B を任意に取れば、[0,1)A ⊂ [0,1)B∈F_N なので、 μ_N^*([0,1)A) ≦ μ_N^*([0,1)B)=μ_N([0,1)B)=μ_N(B) である。 A⊂B∈F_N なる B は任意だったから、そのような B の inf を取れば、 μ_N^*([0,1)A)≦μ_N^*(A) となる。次に、[0,1)A ⊂ B ∈ F_N なる B を任意にとる。 任意の x∈[0,1) に対して、[0,1)A 及び B の x での断面を考えれば、 ([0,1)A)_x ⊂ B_x である。([0,1)A)_x = A なので、A ⊂ B_x である。両辺の μ_N^*() を考えれば、 μ_N^*(A) ≦ μ_N^*(B_x)=μ_N(B_x) =∫_{ [0,1]^N } 1_{B_x}(y) dμ_N(y) =∫_{ [0,1]^N } 1_B(x,y) dμ_N(y) である。これが任意の x∈[0,1) で言える。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/400
434: 132人目の素数さん [sage] 2022/11/01(火) 00:10:10.22 ID:sIOgpcGr では、>>399は丸ごと削除し、そして>399の性質を使っている唯一の>>404を証明し直す。 そのやり方は、>>400, >>402と全く同じ方法でよかった。 A⊂[0,1)^N を任意に取る。μ_{N*}([0,1)A)=μ_{N*}(A) を示したい。 A⊃B∈F_N なる B を任意に取れば、[0,1)A ⊃ [0,1)B∈F_N なので、 μ_{N*}([0,1)A) ≧ μ_{N*}([0,1)B)=μ_N([0,1)B)=μ_N(B) である。 A⊃B∈F_N なる B は任意だったから、そのような B の sup を取れば、 μ_{N*}([0,1)A)≧μ_N^*(A) となる。次に、[0,1)A ⊃ B ∈ F_N なる B を任意に取る。 x∈[0,1) を任意に取って、x での断面を考えれば、( [0,1)A )_x ⊃ B_x である。 ( [0,1)A )_x = A なので、A ⊃ B_x である。さらに、B∈F_N により B_x∈F_N である。 よって、μ_{N*}(A)≧μ_{N*}(B_x)=μ_N(B_x)である。これが任意の x∈[0,1) で言える。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/434
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.089s