[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
309: 132人目の素数さん [] 2022/10/30(日) 14:49:42.75 ID:S1FiB990 >>238-239 補足 >無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。 ここを補足すると 1)数論系では: 有限小数環FD⊂有理数環Q⊂実数環R(or 複素数環C) (注:有限小数 Finite decimalより、FDとした ) ここで ・有限小数環と有理数環とは、基底は可算無限 ・実数環と複素数環とは、基底は非可算無限(ハメル基底) (なお、有限小数が和と積で閉じてて、環を成すことは容易に分かる) ・実数環は完備で、有理数環と有限小数環は完備ではない (なお、有理数環と有限小数環とも、その内部でコーシー列を作り、完備な実数環を構成できる) 2)関数解析系では:(>>32-35ご参照) 多項式環F[x]⊂有理式環RF[x]⊂形式的冪級数環F{[x]} (有理式環:任意の二つの多項式f1(x),f2(x)の商f1(x)/f2(x)を含む。但しf2(x)≠0。f1(x)/f2(x)が、和と積で閉じていることは見やすい) (注:有理式 rational function より、RF[x]とした ) ここで ・多項式環は、基底は可算無限次元の線形空間になる (x^0,x^1,x^2,・・,x^n,・・ が、標準的な基底になる) ・形式的冪級数環は、基底は非可算無限(実数のハメル基底と類似が成り立つ) ・形式的冪級数環は完備で、多項式環と有理式環は完備ではない (なお、多項式環と有理式環とも、その内部でコーシー列を作り、完備な実数環を構成できる) 3)つまり ・多項式環は、基底は可算無限の線形空間を成す ・形式的冪級数環は、基底は非可算無限(実数のハメル基底と類似)の線形空間を成す つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/309
310: 132人目の素数さん [] 2022/10/30(日) 14:50:19.95 ID:S1FiB990 >>309 つづき 4)で ・代数学では、任意のn次多項式f(x) n∈N(自然数)として、何の問題もない ・しかし、確率論の扱いとしては、 「可算無限次元の線形空間から、無作為に有限次元のベクトルを抽出しました」 というと、完全に形容矛盾! (可算無限次元の線形空間から無作為抽出なら、当然可算無限次元のベクトルを抽出すべき) ・これを、どう解釈するか? そもそも、「可算無限次元の線形空間の多項式環の(有限)次元を、無作為抽出で使う確率論が無茶だ」 と考えるのが、妥当だろう(多項式環の元の多項式の次元は、非正則分布を成すし) (参考) https://encyclopediaofmath.org/wiki/Basis Basis - Encyclopedia of Mathematics 2020/05/29 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/310
317: 132人目の素数さん [sage] 2022/10/30(日) 15:07:24.06 ID:6rtRwLi2 >>309-310 相変わらず無駄な補足を繰り返して「非正則分布」とやらに 固執しているスレ主であるが、無駄である。 >>290-308 によって、スレ主は完全に論破された。 非正則分布の話題に関して最も重要なのは ・ ランダム時枝ゲーム(>>292)を記述する確率空間は(Ω,F,P) (>>293-294)であり、非正則分布は登場しない。 この部分である。使用される確率空間の正体が (Ω,F,P) であると判明してしまった以上、 非正則分布を用いたスレ主の論法は全て吹き飛ぶ。(Ω,F,P)とは何の関係もない非正則分布を スレ主が勝手に導入していただけであり、スレ主が勝手に自爆していただけである。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/317
322: 132人目の素数さん [sage] 2022/10/30(日) 15:14:11.11 ID:0+5eyUkB >>309と>>310が全然つながってない オチコボレの試験答案あるある >「可算無限次元の線形空間の多項式環の(有限)次元を、 > 無作為抽出で使う確率論が無茶だ」 多項式環が可算無限次元だというだけで 無作為抽出すれば必ず無限次元多項式が選べる とかいうほうが多項式の定義も分からん🐎🦌だろw 1、「数学博士」6rtRwLi2の論破と無関係に、自爆死w http://rio2016.5ch.net/test/read.cgi/math/1666352731/322
349: 132人目の素数さん [] 2022/10/30(日) 20:25:28.30 ID:S1FiB990 >>309 補足 1)(対応関係) 数論系 有限小数環FD⊂有理数環Q⊂実数環R(or 複素数環C) ↓↑ 関数解析系 多項式環F[x]⊂有理式環RF[x]⊂形式的冪級数環F{[x]} こういう対応関係だね 2)(可算非可算、完備非完備) ・有限小数環FDと有理数環Qが、加算無限集合で、非完備 同様に、多項式環F[x]が加算無限次元線形空間で非完備、 有理式環RF[x]は非完備(こちらは、非可算無限次元かな?) ・実数環R(or 複素数環C)は、非可算無限集合で、完備 同様に、形式的冪級数環F{[x]}が、非可算無限次元線形空間で、完備 3)(時枝の数列のしっぽの視点で) ・数論系では、無限小数展開で考えて 有限小数は、ある小数位数以降のしっぽが全て0 有理数は、循環節のしっぽを持つ(しっぽが全て0も循環節に入れる) 実数環R(or 複素数環C)は、循環しない任意の無限小数位数のしっぽを持つ ・関数解析系では、 多項式はある次数以降のしっぽの係数が全て0 有理式は、循環節類似の規則的なしっぽを持つ(複素数係数又は実数係数ならば)*) 形式的冪級数は、規則性のないしっぽを持つ *)複素数係数なら分母の多項式は、1次式に因数分解できる。実数係数ならば、分母の多項式は、1次又は2次式に因数分解できる。そして、部分分数展開できるので (既約実2次式は、複素共役の1次式に分解できて、複素数の範囲で部分分数展開できることを注意しておく) http://www.aoni.waseda.jp/sadayosi/course/past/comb15/chapter1.pdf 1 べき級数型母関数 P2 7. コメント 有理式は分母が因数分解できれば部分分数展開でき,an の一般項を n の式で表すのは 1/(1 ? x)^k=∑n=0~∞ (k + n ? 1)!/{(k ? 1)! n!} x^n に帰着される. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/349
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s