[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
266: 132人目の素数さん [] 2022/10/29(土) 23:32:05.06 ID:TJ1yzMer >>236 補足の続き 1)非正則分布とは? >>13の通り 確率の和(積分)が1ではない つまり、全事象が無限大に発散して、全事象を1とすることができない (コルモゴロフの確率公理を満たすことができない分布のこと) 2)要するに、非正則分布は、例えば、一様分布の範囲を無限に広げた分布である(一様事前分布)>>28 範囲が無限であっても、正規分布のように、指数関数的に減衰する場合は、積分は発散せず、正当に扱える 類似で、裾の重い分布がある 分布の裾が、xの-1乗より早く減衰すれば、積分は発散しない (積分 ∫x=1~∞ x^-1 dx が発散して∞になることは、よく知られている)>>13 3)では、時枝の決定番号はどうか? 決定番号は、多項式環の多項式の次数+1と解せられる>>161 いま、箱にサイコロの目1~6を入れる 1次式 a0+a1x で6^2通り 2次式 a0+a1xa2x^2 で6^3通り n次式 a0+a1xa2x^2・・ で6^(n+1)通り 4)つまり、決定番号は減衰するどころか、 増大するという とんでもない分布になっている 5)さらに、1~mの数字を入れれば、n次式でm^(n+1)通り mが全ての自然数Nを渡るならば、n次式でN^(n+1)通り 全ての実数Rを渡るならば、n次式でR^(n+1)通り 6)そして、多項式環は無限次元線形空間を成すから>>32-33 結局、多項式の次数の分布は、無限次元線形空間R^N内のベクトルの分布 (増加も破天荒で、非可算無限倍で増加) 7)無限次元線形空間R^N内から、無作為にベクトルを取れば、それは無限次元であって 従って、それは無限次の式を意味するってこと 8)だから、時枝氏の決定番号は非正則分布で、多項式環=無限次元線形空間R^N だから>>32-34 有限次の多項式100個を選んだら、それは無作為だとは、言えないってこと よって、無作為性が否定され、その確率計算は、正当化されないのです>>261 (強いて言えば、条件付き確率計算になる>>105) http://rio2016.5ch.net/test/read.cgi/math/1666352731/266
269: 132人目の素数さん [sage] 2022/10/29(土) 23:41:04.08 ID:ZJbWkGRj >>266 >4)つまり、決定番号は減衰するどころか、 > 増大するという とんでもない分布になっている これは、写像 d:[0,1]^N → N が非有界であるという事実を述べているだけ。 同じことだが、{ d(s)|s∈[0,1]^N } という集合が N の中で非有界であるという事実を 述べているだけ。d の分布として何が採用されているのかは、何も述べられていない。 >6)そして、多項式環は無限次元線形空間を成すから>>32-33 > 結局、多項式の次数の分布は、無限次元線形空間R^N内のベクトルの分布 > (増加も破天荒で、非可算無限倍で増加) これもまた、{ deg f(x)|f(x)∈R[x] } という集合が N の中で非有界である という事実を述べているだけ。d の分布として何が採用されているのかは、何も述べられていない。 >8)だから、時枝氏の決定番号は非正則分布で、多項式環=無限次元線形空間R^N だから>>32-34 ここでスレ主は、d の分布として「非正則分布」を採用した。 つまり、スレ主が勝手に非正則分布を採用しただけ。決定番号の性質から 非正則分布が自動的に導出されるのではなくて、スレ主が勝手に非正則分布を採用しただけ。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/269
273: 132人目の素数さん [] 2022/10/29(土) 23:55:34.43 ID:jI1//XDz >>266 1)非正則分布とは? 非正則分布を使っているエビデンスを記事原文から引用せよ http://rio2016.5ch.net/test/read.cgi/math/1666352731/273
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.044s