[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
243: 132人目の素数さん [] 2022/10/29(土) 17:01:09.00 ID:vx17fikP ∪R^n(n∈N) と R^N は異なる無限次元線型空間である そもそも(代数)次元が異なる 前者は可算次元だが、後者は非可算次元である ついでにいうとヒルベルト数列空間l2は 前者を包含し、後者に包含される ∪R^n(n∈N) ⊂ l2 ⊂ R^N http://rio2016.5ch.net/test/read.cgi/math/1666352731/243
252: 132人目の素数さん [] 2022/10/29(土) 20:02:01.24 ID:TJ1yzMer >>243-244 >∪R^n(n∈N) ⊂ l2 ⊂ R^N "∪R^n(n∈N) ⊂ l2"が違うだろ ∪R^n(n∈N) は、完備でない無限次元線形空間で可算なハメル基底を持つもの>>239 とする つまり、これは ”多項式環 F[x]:任意の自然数より大きい次元の部分空間を持つから無限次元である(都築 暢夫 広島大)”>>32 ”多項式空間 K[x] や形式的冪級数の空間 K[[x]] は無限次元.”柳田伸太郎 名古屋大学 >>33 に相当する いま、各座標の値がaである(a,a,・・,a,・・)∈∪R^n(n∈N) を考える 二乗総和を考えると Σn=1→∞ a^2 →∞ つまり、二乗総和は収束しない 従って、"∪R^n(n∈N) ⊂ l2"は、不成立! (参考) https://ja.wikipedia.org/wiki/%E6%95%B0%E5%88%97%E7%A9%BA%E9%96%93 数列空間 数列空間(英: sequence space)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 l^p である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するL^p空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、FK空間(英語版)と呼ばれるフレシェ空間の特殊な場合となる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/252
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s