[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
239: 132人目の素数さん [] 2022/10/29(土) 15:49:10.13 ID:TJ1yzMer >>238 つづき 無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。 例 フーリエ級数論において、 略 当該函数系の「無限線型結合」として表される。しかし殆どの自乗可積分函数はこれら基底函数の有限線型結合としては表すことができず、したがってこの「基底」はハメル基底には「ならない」。この空間の任意のハメル基底は、この可算無限にすぎない「基底」よりもはるかに大きいのである(ハメル基底は連続の濃度をもつ[13])。この種の空間のハメル基底は典型的に有用でなく、一方でこれらの空間の正規直交基底はフーリエ解析において本質的である。 https://en.wikipedia.org/wiki/Basis_(linear_algebra)#Hamel_basis Basis (linear algebra) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/239
240: 132人目の素数さん [] 2022/10/29(土) 15:49:37.75 ID:TJ1yzMer >>239 つづき https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93 ヒルベルト空間 正則関数の空間 ハーディ空間 複素解析や調和解析で用いられるハーディ空間は、その元が複素領域上の正則関数となっているような関数空間の一種である[26]。 ベルグマン空間 正則関数の成すヒルベルト空間の別なクラスにベルグマン空間がある[27]。 ベルグマン空間は再生核ヒルベルト空間(英語版)(関数からなるヒルベルト空間で、先と同様の再生性を持つ積分核 K(ζ,z) を備えたもの)の例になっている。 応用 ヒルベルト空間の応用の多くは、ヒルベルト空間において射影や基底変換といったような単純な幾何学的概念が、ふつうの有限次元の場合に考えられるそれらの自然な一般化になっているという事実に依拠して行われている。 量子力学 ディラック[41]とフォンノイマン[42]によって発展した量子力学の数学的に厳密な定式化は、量子力学系の取りうる状態(より正確には純粋状態)が、状態空間と呼ばれる可分な複素ヒルベルト空間に属する単位ベクトル(状態ベクトルという)によって(位相因子と呼ばれるノルム 1 の複素数の違いを除いて)表現される。つまり、取りうる状態はあるヒルベルト空間の射影化(ふつうは複素射影空間と呼ばれる)の元である。このヒルベルト空間が実際にどのようなものになるかは系に依存する。 https://en.wikipedia.org/wiki/Hilbert_space Hilbert space (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/240
241: 132人目の素数さん [sage] 2022/10/29(土) 16:02:21.45 ID:vx17fikP >>236 >ここらが分かると、 >「決定番号が非正則分布になっていること」 >が分かるだろう それじゃわからんけどw むしろ、1のいう空間が、 「全ての有限次元ユークリッド空間の合併」 ということだけからわかるけどw 直接原因を指摘できず関係ないことを書くのはオチコボレ劣等生の典型的症状w >>237-240 無駄なコピペやめような 下痢するだけだぞw http://rio2016.5ch.net/test/read.cgi/math/1666352731/241
244: 132人目の素数さん [sage] 2022/10/29(土) 17:06:30.95 ID:ZJbWkGRj >>236-240 ベクトル空間やヒルベルト空間について いくら補足を繰り返しても、時枝記事に反論したことにはならない。 ・ 回答者は 1,2,…,100 からランダムに番号 i を選ぶので、 回答者の勝率は確率空間 ({1,2,…,100}, pow({1,2,…,100}), P) を用いて算出される。 ・ 回答者が当たらないというなら、回答者が勝つという事象を A と置くとき、この A を 確率空間({1,2,…,100}, pow({1,2,…,100}), P)の中で構成し、そして P(A)=0 を示さなければならない。 ・ この場合、A は {1,2,…,100} の部分集合として構成されるので、P(A)=0 であるためには、 Aは空集合でなければならない。しかし、決定番号の性質上、A は少なくとも 99 個の元を含む。 つまり P(A) ≧ 99/100 である。これが時枝記事で言っていること。 結局、スレ主は何も反論できていない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/244
252: 132人目の素数さん [] 2022/10/29(土) 20:02:01.24 ID:TJ1yzMer >>243-244 >∪R^n(n∈N) ⊂ l2 ⊂ R^N "∪R^n(n∈N) ⊂ l2"が違うだろ ∪R^n(n∈N) は、完備でない無限次元線形空間で可算なハメル基底を持つもの>>239 とする つまり、これは ”多項式環 F[x]:任意の自然数より大きい次元の部分空間を持つから無限次元である(都築 暢夫 広島大)”>>32 ”多項式空間 K[x] や形式的冪級数の空間 K[[x]] は無限次元.”柳田伸太郎 名古屋大学 >>33 に相当する いま、各座標の値がaである(a,a,・・,a,・・)∈∪R^n(n∈N) を考える 二乗総和を考えると Σn=1→∞ a^2 →∞ つまり、二乗総和は収束しない 従って、"∪R^n(n∈N) ⊂ l2"は、不成立! (参考) https://ja.wikipedia.org/wiki/%E6%95%B0%E5%88%97%E7%A9%BA%E9%96%93 数列空間 数列空間(英: sequence space)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 l^p である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するL^p空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、FK空間(英語版)と呼ばれるフレシェ空間の特殊な場合となる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/252
309: 132人目の素数さん [] 2022/10/30(日) 14:49:42.75 ID:S1FiB990 >>238-239 補足 >無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。 ここを補足すると 1)数論系では: 有限小数環FD⊂有理数環Q⊂実数環R(or 複素数環C) (注:有限小数 Finite decimalより、FDとした ) ここで ・有限小数環と有理数環とは、基底は可算無限 ・実数環と複素数環とは、基底は非可算無限(ハメル基底) (なお、有限小数が和と積で閉じてて、環を成すことは容易に分かる) ・実数環は完備で、有理数環と有限小数環は完備ではない (なお、有理数環と有限小数環とも、その内部でコーシー列を作り、完備な実数環を構成できる) 2)関数解析系では:(>>32-35ご参照) 多項式環F[x]⊂有理式環RF[x]⊂形式的冪級数環F{[x]} (有理式環:任意の二つの多項式f1(x),f2(x)の商f1(x)/f2(x)を含む。但しf2(x)≠0。f1(x)/f2(x)が、和と積で閉じていることは見やすい) (注:有理式 rational function より、RF[x]とした ) ここで ・多項式環は、基底は可算無限次元の線形空間になる (x^0,x^1,x^2,・・,x^n,・・ が、標準的な基底になる) ・形式的冪級数環は、基底は非可算無限(実数のハメル基底と類似が成り立つ) ・形式的冪級数環は完備で、多項式環と有理式環は完備ではない (なお、多項式環と有理式環とも、その内部でコーシー列を作り、完備な実数環を構成できる) 3)つまり ・多項式環は、基底は可算無限の線形空間を成す ・形式的冪級数環は、基底は非可算無限(実数のハメル基底と類似)の線形空間を成す つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/309
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.041s