[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
238: 132人目の素数さん [] 2022/10/29(土) 15:48:12.15 ID:TJ1yzMer >>237 つづき https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6) 基底 (線型代数学) 任意のベクトル空間は基底を持つ(このことの証明には選択公理が必要である)。一つのベクトル空間では、全ての基底が同じ濃度(元の個数)を持ち、その濃度をそのベクトル空間の次元と呼ぶ。この事実は次元定理と呼ばれる(証明には、選択公理のきわめて弱い形である超フィルター補題が必要である)。 順序基底と座標系 V は体 F 上の n-次元ベクトル空間であるものとする。V の順序基底を一つ選ぶことは、数ベクトル空間 Fn (座標全体のなすベクトル空間と考えられる)から V への線型同型写像 φ を一つ選ぶことと等価である。これを見るのに Fn の標準基底が順序基底であることが利用できる。 ベクトル v を各成分 aj(v) へ写す各写像は、φ-1 が線型ゆえ、V から F への線型写像になる。即ちこれらは線型汎函数であり、またこれらは V の双対空間の基底を成し、双対基底と呼ばれる。 関連概念 解析学 無限次元の実または複素線型空間に関する文脈では、本項でいう意味での基底を表すのに、しばしばハメル基底(ゲオルク・ハメルに由来[12])や代数基底という用語が用いられる。(ハメル基底は R の Q-基底を意味することもある。)これは、付加的な構造を備えた無限次元線型空間における別の種類の「基底」の概念との区別のためである。そのような基底の概念で極めて重要なものとしては、ヒルベルト空間上の正規直交基底やノルム線型空間上のシャウダー基底およびマルクシェヴィチ基底が挙げられる。 これらの基底概念に共通する特徴は、全体空間を生成するのに基底ベクトルの無限線型結合までを許すことである。これにはもちろん、無限和が意味を持つような空間(位相線型空間)を考えることが必要である。位相線型空間は非常に広範なベクトル空間のクラスであり、例えばヒルベルト空間やバナッハ空間あるいはフレシェ空間といったものを含む。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/238
239: 132人目の素数さん [] 2022/10/29(土) 15:49:10.13 ID:TJ1yzMer >>238 つづき 無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。 例 フーリエ級数論において、 略 当該函数系の「無限線型結合」として表される。しかし殆どの自乗可積分函数はこれら基底函数の有限線型結合としては表すことができず、したがってこの「基底」はハメル基底には「ならない」。この空間の任意のハメル基底は、この可算無限にすぎない「基底」よりもはるかに大きいのである(ハメル基底は連続の濃度をもつ[13])。この種の空間のハメル基底は典型的に有用でなく、一方でこれらの空間の正規直交基底はフーリエ解析において本質的である。 https://en.wikipedia.org/wiki/Basis_(linear_algebra)#Hamel_basis Basis (linear algebra) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/239
241: 132人目の素数さん [sage] 2022/10/29(土) 16:02:21.45 ID:vx17fikP >>236 >ここらが分かると、 >「決定番号が非正則分布になっていること」 >が分かるだろう それじゃわからんけどw むしろ、1のいう空間が、 「全ての有限次元ユークリッド空間の合併」 ということだけからわかるけどw 直接原因を指摘できず関係ないことを書くのはオチコボレ劣等生の典型的症状w >>237-240 無駄なコピペやめような 下痢するだけだぞw http://rio2016.5ch.net/test/read.cgi/math/1666352731/241
244: 132人目の素数さん [sage] 2022/10/29(土) 17:06:30.95 ID:ZJbWkGRj >>236-240 ベクトル空間やヒルベルト空間について いくら補足を繰り返しても、時枝記事に反論したことにはならない。 ・ 回答者は 1,2,…,100 からランダムに番号 i を選ぶので、 回答者の勝率は確率空間 ({1,2,…,100}, pow({1,2,…,100}), P) を用いて算出される。 ・ 回答者が当たらないというなら、回答者が勝つという事象を A と置くとき、この A を 確率空間({1,2,…,100}, pow({1,2,…,100}), P)の中で構成し、そして P(A)=0 を示さなければならない。 ・ この場合、A は {1,2,…,100} の部分集合として構成されるので、P(A)=0 であるためには、 Aは空集合でなければならない。しかし、決定番号の性質上、A は少なくとも 99 個の元を含む。 つまり P(A) ≧ 99/100 である。これが時枝記事で言っていること。 結局、スレ主は何も反論できていない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/244
309: 132人目の素数さん [] 2022/10/30(日) 14:49:42.75 ID:S1FiB990 >>238-239 補足 >無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。 ここを補足すると 1)数論系では: 有限小数環FD⊂有理数環Q⊂実数環R(or 複素数環C) (注:有限小数 Finite decimalより、FDとした ) ここで ・有限小数環と有理数環とは、基底は可算無限 ・実数環と複素数環とは、基底は非可算無限(ハメル基底) (なお、有限小数が和と積で閉じてて、環を成すことは容易に分かる) ・実数環は完備で、有理数環と有限小数環は完備ではない (なお、有理数環と有限小数環とも、その内部でコーシー列を作り、完備な実数環を構成できる) 2)関数解析系では:(>>32-35ご参照) 多項式環F[x]⊂有理式環RF[x]⊂形式的冪級数環F{[x]} (有理式環:任意の二つの多項式f1(x),f2(x)の商f1(x)/f2(x)を含む。但しf2(x)≠0。f1(x)/f2(x)が、和と積で閉じていることは見やすい) (注:有理式 rational function より、RF[x]とした ) ここで ・多項式環は、基底は可算無限次元の線形空間になる (x^0,x^1,x^2,・・,x^n,・・ が、標準的な基底になる) ・形式的冪級数環は、基底は非可算無限(実数のハメル基底と類似が成り立つ) ・形式的冪級数環は完備で、多項式環と有理式環は完備ではない (なお、多項式環と有理式環とも、その内部でコーシー列を作り、完備な実数環を構成できる) 3)つまり ・多項式環は、基底は可算無限の線形空間を成す ・形式的冪級数環は、基底は非可算無限(実数のハメル基底と類似)の線形空間を成す つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/309
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.446s*