[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
237: 132人目の素数さん [] 2022/10/29(土) 15:47:04.41 ID:TJ1yzMer >>236 つづき 最後に気を付けるべき点は、ユークリッド空間は技術的にはベクトル空間ではなくて、(ベクトル空間が作用する)アフィン空間と考えなければいけないことである。直観的には、この差異はユークリッド空間には原点の位置を標準的に決めることはできない(平行移動でどこへでも動かせるため)ことをいうものである。大抵の場合においては、この差異を無視してもそれほど問題を生じることはないであろう。 厳密な定義 いったん直交座標系が固定されると、n-次元ユークリッド空間 (S, V) は n-次元の標準的ユークリッド空間 (Rn, Rn) と同一視することができるので、ユークリッド空間といったら標準的ユークリッド空間のことを指す場合も多い。 なお、n-次元ユークリッド空間の定義において、「実内積空間」を「実ベクトル空間」に置き換えて得られる空間を n-次元アフィン空間と呼ぶ。ユークリッド空間は計量(内積)をもった特別なアフィン空間であるということができる。計量をもたないアフィン空間においては、二点間の距離や線分のなす角などは定義されないが、ユークリッド空間においてはこれらの概念を以下に述べる仕方で定義することができる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば Rn とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で En と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。 https://en.wikipedia.org/wiki/Euclidean_space Euclidean space つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/237
238: 132人目の素数さん [] 2022/10/29(土) 15:48:12.15 ID:TJ1yzMer >>237 つづき https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6) 基底 (線型代数学) 任意のベクトル空間は基底を持つ(このことの証明には選択公理が必要である)。一つのベクトル空間では、全ての基底が同じ濃度(元の個数)を持ち、その濃度をそのベクトル空間の次元と呼ぶ。この事実は次元定理と呼ばれる(証明には、選択公理のきわめて弱い形である超フィルター補題が必要である)。 順序基底と座標系 V は体 F 上の n-次元ベクトル空間であるものとする。V の順序基底を一つ選ぶことは、数ベクトル空間 Fn (座標全体のなすベクトル空間と考えられる)から V への線型同型写像 φ を一つ選ぶことと等価である。これを見るのに Fn の標準基底が順序基底であることが利用できる。 ベクトル v を各成分 aj(v) へ写す各写像は、φ-1 が線型ゆえ、V から F への線型写像になる。即ちこれらは線型汎函数であり、またこれらは V の双対空間の基底を成し、双対基底と呼ばれる。 関連概念 解析学 無限次元の実または複素線型空間に関する文脈では、本項でいう意味での基底を表すのに、しばしばハメル基底(ゲオルク・ハメルに由来[12])や代数基底という用語が用いられる。(ハメル基底は R の Q-基底を意味することもある。)これは、付加的な構造を備えた無限次元線型空間における別の種類の「基底」の概念との区別のためである。そのような基底の概念で極めて重要なものとしては、ヒルベルト空間上の正規直交基底やノルム線型空間上のシャウダー基底およびマルクシェヴィチ基底が挙げられる。 これらの基底概念に共通する特徴は、全体空間を生成するのに基底ベクトルの無限線型結合までを許すことである。これにはもちろん、無限和が意味を持つような空間(位相線型空間)を考えることが必要である。位相線型空間は非常に広範なベクトル空間のクラスであり、例えばヒルベルト空間やバナッハ空間あるいはフレシェ空間といったものを含む。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/238
241: 132人目の素数さん [sage] 2022/10/29(土) 16:02:21.45 ID:vx17fikP >>236 >ここらが分かると、 >「決定番号が非正則分布になっていること」 >が分かるだろう それじゃわからんけどw むしろ、1のいう空間が、 「全ての有限次元ユークリッド空間の合併」 ということだけからわかるけどw 直接原因を指摘できず関係ないことを書くのはオチコボレ劣等生の典型的症状w >>237-240 無駄なコピペやめような 下痢するだけだぞw http://rio2016.5ch.net/test/read.cgi/math/1666352731/241
244: 132人目の素数さん [sage] 2022/10/29(土) 17:06:30.95 ID:ZJbWkGRj >>236-240 ベクトル空間やヒルベルト空間について いくら補足を繰り返しても、時枝記事に反論したことにはならない。 ・ 回答者は 1,2,…,100 からランダムに番号 i を選ぶので、 回答者の勝率は確率空間 ({1,2,…,100}, pow({1,2,…,100}), P) を用いて算出される。 ・ 回答者が当たらないというなら、回答者が勝つという事象を A と置くとき、この A を 確率空間({1,2,…,100}, pow({1,2,…,100}), P)の中で構成し、そして P(A)=0 を示さなければならない。 ・ この場合、A は {1,2,…,100} の部分集合として構成されるので、P(A)=0 であるためには、 Aは空集合でなければならない。しかし、決定番号の性質上、A は少なくとも 99 個の元を含む。 つまり P(A) ≧ 99/100 である。これが時枝記事で言っていること。 結局、スレ主は何も反論できていない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/244
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s