[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
236: 132人目の素数さん [] 2022/10/29(土) 15:46:39.07 ID:TJ1yzMer >>220 補足 > 決定番号は、多項式環の多項式の次数+1と解せられる>>161 > 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること > そこが、時枝記事のトリックのキモです <補足> これについては、>>32-35に書いてあるが さらに、掘り下げようと思う そのために、レベル合わせのために下記を、引用する ポイントは 1)多項式環の無限次元線形空間が、ある種ユークリッド空間(有限次元)の無限次元化と考えられること 2)形式的冪級数環は、多項式環を完備化したと考えられること 3)形式的冪級数環はハメル基底(非可算無限)を持ち、一方 多項式環は”完備でない”、”可算なハメル基底を持つもの”になっているってこと ここらが分かると、 「決定番号が非正則分布>>28になっていること」(上記)が分かるだろう (参考) https://ja.wikipedia.org/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E7%A9%BA%E9%96%93 ユークリッド空間 直観的な説明 ユークリッド平面を考える一つの方法は、(距離や角度といったような言葉で表される)ある種の関係を満足する点集合[注釈 2]と見なすことである。 ・ユークリッド平面の点は、二次元の座標ベクトルに対応する。 ・平面上の平行移動は、ベクトルの加法に対応する。 ・回転を定義する角度や距離は、内積から導かれる。 といったようなことを考えるのである。こうやってユークリッド平面が記述されてしまえば、これらの概念を勝手な次元へ拡張することは実に簡単である。次元が上がっても大部分の語彙や公式は難しくなったりはしない(ただし、高次元の回転についてはやや注意が必要である。また高次元空間の可視化は、熟達した数学者でさえ難しい)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/236
237: 132人目の素数さん [] 2022/10/29(土) 15:47:04.41 ID:TJ1yzMer >>236 つづき 最後に気を付けるべき点は、ユークリッド空間は技術的にはベクトル空間ではなくて、(ベクトル空間が作用する)アフィン空間と考えなければいけないことである。直観的には、この差異はユークリッド空間には原点の位置を標準的に決めることはできない(平行移動でどこへでも動かせるため)ことをいうものである。大抵の場合においては、この差異を無視してもそれほど問題を生じることはないであろう。 厳密な定義 いったん直交座標系が固定されると、n-次元ユークリッド空間 (S, V) は n-次元の標準的ユークリッド空間 (Rn, Rn) と同一視することができるので、ユークリッド空間といったら標準的ユークリッド空間のことを指す場合も多い。 なお、n-次元ユークリッド空間の定義において、「実内積空間」を「実ベクトル空間」に置き換えて得られる空間を n-次元アフィン空間と呼ぶ。ユークリッド空間は計量(内積)をもった特別なアフィン空間であるということができる。計量をもたないアフィン空間においては、二点間の距離や線分のなす角などは定義されないが、ユークリッド空間においてはこれらの概念を以下に述べる仕方で定義することができる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば Rn とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で En と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。 https://en.wikipedia.org/wiki/Euclidean_space Euclidean space つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/237
241: 132人目の素数さん [sage] 2022/10/29(土) 16:02:21.45 ID:vx17fikP >>236 >ここらが分かると、 >「決定番号が非正則分布になっていること」 >が分かるだろう それじゃわからんけどw むしろ、1のいう空間が、 「全ての有限次元ユークリッド空間の合併」 ということだけからわかるけどw 直接原因を指摘できず関係ないことを書くのはオチコボレ劣等生の典型的症状w >>237-240 無駄なコピペやめような 下痢するだけだぞw http://rio2016.5ch.net/test/read.cgi/math/1666352731/241
244: 132人目の素数さん [sage] 2022/10/29(土) 17:06:30.95 ID:ZJbWkGRj >>236-240 ベクトル空間やヒルベルト空間について いくら補足を繰り返しても、時枝記事に反論したことにはならない。 ・ 回答者は 1,2,…,100 からランダムに番号 i を選ぶので、 回答者の勝率は確率空間 ({1,2,…,100}, pow({1,2,…,100}), P) を用いて算出される。 ・ 回答者が当たらないというなら、回答者が勝つという事象を A と置くとき、この A を 確率空間({1,2,…,100}, pow({1,2,…,100}), P)の中で構成し、そして P(A)=0 を示さなければならない。 ・ この場合、A は {1,2,…,100} の部分集合として構成されるので、P(A)=0 であるためには、 Aは空集合でなければならない。しかし、決定番号の性質上、A は少なくとも 99 個の元を含む。 つまり P(A) ≧ 99/100 である。これが時枝記事で言っていること。 結局、スレ主は何も反論できていない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/244
261: 132人目の素数さん [] 2022/10/29(土) 21:57:58.08 ID:TJ1yzMer >>259 >あなたには証明の間違いを指摘できないということですね なんども指摘している 決定番号を使った確率計算をしている しかし、決定番号は非正則分布を成すので 時枝やSergiu Hart氏の確率計算 99/100は 正当化できないってことですよ! (>>220より ”時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること そこが、時枝記事のトリックのキモです”) さらに これの補足は、>>236から 追加を書いているよ(現在進行形ですよ) http://rio2016.5ch.net/test/read.cgi/math/1666352731/261
263: 132人目の素数さん [] 2022/10/29(土) 23:00:52.43 ID:jI1//XDz >>236 >「決定番号が非正則分布>>28になっていること」(上記)が分かるだろう 妄想 実際記事にそんなことは一言も書かれていない http://rio2016.5ch.net/test/read.cgi/math/1666352731/263
266: 132人目の素数さん [] 2022/10/29(土) 23:32:05.06 ID:TJ1yzMer >>236 補足の続き 1)非正則分布とは? >>13の通り 確率の和(積分)が1ではない つまり、全事象が無限大に発散して、全事象を1とすることができない (コルモゴロフの確率公理を満たすことができない分布のこと) 2)要するに、非正則分布は、例えば、一様分布の範囲を無限に広げた分布である(一様事前分布)>>28 範囲が無限であっても、正規分布のように、指数関数的に減衰する場合は、積分は発散せず、正当に扱える 類似で、裾の重い分布がある 分布の裾が、xの-1乗より早く減衰すれば、積分は発散しない (積分 ∫x=1~∞ x^-1 dx が発散して∞になることは、よく知られている)>>13 3)では、時枝の決定番号はどうか? 決定番号は、多項式環の多項式の次数+1と解せられる>>161 いま、箱にサイコロの目1~6を入れる 1次式 a0+a1x で6^2通り 2次式 a0+a1xa2x^2 で6^3通り n次式 a0+a1xa2x^2・・ で6^(n+1)通り 4)つまり、決定番号は減衰するどころか、 増大するという とんでもない分布になっている 5)さらに、1~mの数字を入れれば、n次式でm^(n+1)通り mが全ての自然数Nを渡るならば、n次式でN^(n+1)通り 全ての実数Rを渡るならば、n次式でR^(n+1)通り 6)そして、多項式環は無限次元線形空間を成すから>>32-33 結局、多項式の次数の分布は、無限次元線形空間R^N内のベクトルの分布 (増加も破天荒で、非可算無限倍で増加) 7)無限次元線形空間R^N内から、無作為にベクトルを取れば、それは無限次元であって 従って、それは無限次の式を意味するってこと 8)だから、時枝氏の決定番号は非正則分布で、多項式環=無限次元線形空間R^N だから>>32-34 有限次の多項式100個を選んだら、それは無作為だとは、言えないってこと よって、無作為性が否定され、その確率計算は、正当化されないのです>>261 (強いて言えば、条件付き確率計算になる>>105) http://rio2016.5ch.net/test/read.cgi/math/1666352731/266
516: 132人目の素数さん [] 2022/11/02(水) 12:21:00.99 ID:i6iI4IYN >>515 つづき 上記は、有限次のn 次元ユークリッド空間 Rの測度で 矩形の測度を定めている これで、n→∞を考えると 1)もし、全て(bn - an)>1 ならば、mes(I) →∞に発散する 2)一方、全て(bn - an)<1 ならば、mes(I) →0に潰れる >>236の議論に戻ると 1)多項式環の無限次元線形空間が、ある種ユークリッド空間(有限次元)の無限次元化と考えられること (引用終り) で、>>33 柳田伸太郎 名古屋大 ”形式的冪級数の空間 K[[x]] (例 1.3.8) から I = N を添字集合とする直積 K^N =Πi∈N K への写像 ψ: K[[x]] -→ K^N, Σi=0~∞ fix^i -→ (fi)i∈N は同型写像 (証明は問題 2.3.2). 例 1.3.3 より K^N は数列空間だから, 形式的冪級数の空間 K[[x]] と数列空間 K^N は同じ線形空間と見なせる事が分かる.” から、 時枝氏>>1のR^N上の可算非可算を論じるためには (それは、形式的冪級数の空間 K[[x]]を多項式空間 K[x]で割ったK[[x]]/K[x] を考えることだが>>32-33) そもそも、無限次元の上記 矩形の測度 をどう定義するかから、始めなければならない 上記のように、n→∞で発散したり、0に潰れる測度のままで良いのかどうか? の吟味から必要になるってことです http://rio2016.5ch.net/test/read.cgi/math/1666352731/516
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.045s