[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
161: 132人目の素数さん [] 2022/10/28(金) 07:51:26.44 ID:0FiXm6H7 >>158 補足 補足しておこう 1)時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること 2)決定番号→多項式環内の多項式の次数n+1に相当することは、すでに述べた>>55 3)多項式環内の多項式の次数が非正則分布であることは明らかだ 4)非正則分布内で、100個の決定番号をとっても、ランダムサンプリング(無作為抽出)ではない 5)つまり、ここで通常の確率論ではなくなっているってことだね まあ、小学生には難しいかなw http://rio2016.5ch.net/test/read.cgi/math/1666352731/161
163: 132人目の素数さん [] 2022/10/28(金) 11:26:00.22 ID:ePOfxZ4J >>161 >1)時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること 出題列が固定されていることが記事から読み取れないサルは数学板への出入り遠慮頂けませんか http://rio2016.5ch.net/test/read.cgi/math/1666352731/163
165: 132人目の素数さん [] 2022/10/28(金) 11:32:52.81 ID:PyYxVCuK >>162 ありがとう スレ主です(>>161と同一人です) その主張の正確な意味を、把握できていなかもしれないが ”時枝氏の決定番号の最大値を使う確率99/100理論” を否定する意図なら その主張は正しいと思います! http://rio2016.5ch.net/test/read.cgi/math/1666352731/165
166: 132人目の素数さん [] 2022/10/28(金) 11:35:34.67 ID:ePOfxZ4J >>161 >4)非正則分布内で、100個の決定番号をとっても、ランダムサンプリング(無作為抽出)ではない 確率変数が違うと何度言えば分かるのかこのサルは 決定番号100個を自然数全体からランダム選択しない、なぜなら出題列は定数⇒100列は定数⇒100列の決定番号は定数 100列のいずれか1列をランダム選択する >5)つまり、ここで通常の確率論ではなくなっているってことだね 離散一様分布はどの確率論の教科書にも載ってますが何か? http://rio2016.5ch.net/test/read.cgi/math/1666352731/166
172: 132人目の素数さん [sage] 2022/10/28(金) 13:14:57.73 ID:6/MPYgLL >>161 >3)多項式環内の多項式の次数が非正則分布であることは明らかだ >4)非正則分布内で、100個の決定番号をとっても、ランダムサンプリング(無作為抽出)ではない >5)つまり、ここで通常の確率論ではなくなっているってことだね 多項式環 R[x] 上には標準的な無作為抽出がそもそも存在しない。 従って、無作為抽出でなければ確率論でないのならば、 R[x] 上で確率論を論じることそのものが不可能ということになる。 実際には、R[x] 上に任意のσ集合体Fと確率測度を定めて 確率空間 (R[x], F, P) を設定すれば、この確率空間に基づいた確率論を論じることが可能。 特に、F として { f(x)∈R[x]|deg f(x)=n}∈F (∀n≧0) を満たすものを採用すれば、 この確率空間 (R[x], F, P) において「多項式の次数はnである」という事象は可測になり、 測度の上への連続性から lim[m→∞] P( deg f ∈ [0,m] ) = 1 が成り立つ。すなわち、この確率空間において、多項式の次数は非正則分布にならない。 スレ主は「多項式環内の多項式の次数が非正則分布であることは明らかだ」と言っているが、 多項式の次数が非正則分布にならない確率空間 (R[x], F, P) が存在している時点で スレ主は間違っている。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/172
220: 132人目の素数さん [] 2022/10/29(土) 08:23:08.72 ID:TJ1yzMer >>217 >改めて懐疑派・否定派に>>101を問う 1)反例が存在するよ 2)>>104に書いたが、現代数学の確率論では 可算無限個の確率変数族 X1,・・,Xn ,・・ を扱うことができる 3)サイコロの目を箱に入れると、 その確率は ∀i|i∈N P(Xi)=1/6 となる 4)例外は無い! 確率99/100などには決して成りません!w 5)反例が、現代数学の確率論内に存在するので >>101は不成立ですよ 6)実際、下記 服部哲弥 慶応 にあるように ”無限個の独立確率変数を考えるということは無限次元空間上の関数を考えていることになる” ってこと ある箱1つを残して、他の箱を開けても、独立だから、その1つの箱を的中する助けにはならない!! (分からない人は、服部哲弥を百回音読してねw) 7)だから、あとは、時枝の謎解きです 決定番号は、多項式環の多項式の次数+1と解せられる>>161 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること そこが、時枝記事のトリックのキモです (参考) https://web.econ.keio.ac.jp/staff/hattori/probab.pdf 確率論 服部哲弥 20110909 慶応 P7 発展:「無限次元空間」に値をとる確率変数 この講義では当分の間 Rd 値確率変数(d 次元実確 率変数)とその極限定理(期待値などをとってから d → ∞ としたもの)しか出てこないが,値域と して無限次元 (‘d = ∞’) も非常に重要である. そういう数列の集合上の関数として X をと らえることができると,数列(無限個の実数,即ち無限次元空間)上の確率論(測度論)が展開でき ることになる.このようなことは実現可能であり,今日の確率論の中心的研究分野である.しかも, パラメータ(添字)n は連続変数にすることもできる. P39 無限個の独立確率変数を考えるということは無限次元空間上の関数を考えていることになる.無 限次元空間の上の解析は 20 世紀以降の重要な研究課題なので,無限個の確率変数の解析は重要であ る.その中で独立確率変数列は確率論にとって分かりやすい(解析しやすい)無限次元という,研究 の出発点や計算できる具体例としての重要性がある http://rio2016.5ch.net/test/read.cgi/math/1666352731/220
236: 132人目の素数さん [] 2022/10/29(土) 15:46:39.07 ID:TJ1yzMer >>220 補足 > 決定番号は、多項式環の多項式の次数+1と解せられる>>161 > 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること > そこが、時枝記事のトリックのキモです <補足> これについては、>>32-35に書いてあるが さらに、掘り下げようと思う そのために、レベル合わせのために下記を、引用する ポイントは 1)多項式環の無限次元線形空間が、ある種ユークリッド空間(有限次元)の無限次元化と考えられること 2)形式的冪級数環は、多項式環を完備化したと考えられること 3)形式的冪級数環はハメル基底(非可算無限)を持ち、一方 多項式環は”完備でない”、”可算なハメル基底を持つもの”になっているってこと ここらが分かると、 「決定番号が非正則分布>>28になっていること」(上記)が分かるだろう (参考) https://ja.wikipedia.org/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E7%A9%BA%E9%96%93 ユークリッド空間 直観的な説明 ユークリッド平面を考える一つの方法は、(距離や角度といったような言葉で表される)ある種の関係を満足する点集合[注釈 2]と見なすことである。 ・ユークリッド平面の点は、二次元の座標ベクトルに対応する。 ・平面上の平行移動は、ベクトルの加法に対応する。 ・回転を定義する角度や距離は、内積から導かれる。 といったようなことを考えるのである。こうやってユークリッド平面が記述されてしまえば、これらの概念を勝手な次元へ拡張することは実に簡単である。次元が上がっても大部分の語彙や公式は難しくなったりはしない(ただし、高次元の回転についてはやや注意が必要である。また高次元空間の可視化は、熟達した数学者でさえ難しい)。 つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/236
266: 132人目の素数さん [] 2022/10/29(土) 23:32:05.06 ID:TJ1yzMer >>236 補足の続き 1)非正則分布とは? >>13の通り 確率の和(積分)が1ではない つまり、全事象が無限大に発散して、全事象を1とすることができない (コルモゴロフの確率公理を満たすことができない分布のこと) 2)要するに、非正則分布は、例えば、一様分布の範囲を無限に広げた分布である(一様事前分布)>>28 範囲が無限であっても、正規分布のように、指数関数的に減衰する場合は、積分は発散せず、正当に扱える 類似で、裾の重い分布がある 分布の裾が、xの-1乗より早く減衰すれば、積分は発散しない (積分 ∫x=1~∞ x^-1 dx が発散して∞になることは、よく知られている)>>13 3)では、時枝の決定番号はどうか? 決定番号は、多項式環の多項式の次数+1と解せられる>>161 いま、箱にサイコロの目1~6を入れる 1次式 a0+a1x で6^2通り 2次式 a0+a1xa2x^2 で6^3通り n次式 a0+a1xa2x^2・・ で6^(n+1)通り 4)つまり、決定番号は減衰するどころか、 増大するという とんでもない分布になっている 5)さらに、1~mの数字を入れれば、n次式でm^(n+1)通り mが全ての自然数Nを渡るならば、n次式でN^(n+1)通り 全ての実数Rを渡るならば、n次式でR^(n+1)通り 6)そして、多項式環は無限次元線形空間を成すから>>32-33 結局、多項式の次数の分布は、無限次元線形空間R^N内のベクトルの分布 (増加も破天荒で、非可算無限倍で増加) 7)無限次元線形空間R^N内から、無作為にベクトルを取れば、それは無限次元であって 従って、それは無限次の式を意味するってこと 8)だから、時枝氏の決定番号は非正則分布で、多項式環=無限次元線形空間R^N だから>>32-34 有限次の多項式100個を選んだら、それは無作為だとは、言えないってこと よって、無作為性が否定され、その確率計算は、正当化されないのです>>261 (強いて言えば、条件付き確率計算になる>>105) http://rio2016.5ch.net/test/read.cgi/math/1666352731/266
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.043s