[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
114: 132人目の素数さん [] 2022/10/26(水) 20:15:36.24 ID:b4wD2Jth >>108 >時枝懐疑派は、 >みんな「出題列がsである確率は1」を疑い否定している 懐疑派を3人だけ挙げておく 懐疑派1 現代数学の系譜11 ガロア理論を読む20 [無断転載禁止](c)2ch.net https://wc2014.5ch.net/test/read.cgi/math/1466279209/519 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13] >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13] 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 532 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A [11/13] >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/114
115: 132人目の素数さん [] 2022/10/26(水) 20:15:56.48 ID:b4wD2Jth >>114 つづき 懐疑派2 DR Alexander Pruss氏 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis <回答者 DR Alexander Pruss氏> Here's an amusing thing that may help see how measurability enters into these things. Consider a single sequence of infinitely many independent fair coin flips. Our state space is Ω={0,1}^N, corresponding to an infinite sequence (Xi)∞i=0 of i.i.d.r.v.s with P(Xi=1)=P(Xi=0)=1/2. Start with P being the completion of the natural product measure on Ω. That's a fine argument assuming the function is measurable. But what if it's not? Here is a strategy: Check if X1,X2,... fit with the relevant representative. If so, then guess according to the representative. If not, then guess π. (Yes, I realize that π not∈{0,1}.) Intuitively this seems a really dumb strategy. つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/115
715: 132人目の素数さん [] 2022/11/05(土) 13:06:02.61 ID:3kC00iWj >>612 補足 <関数の可測性について> >>114より 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 (引用終り) >>1より https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 (Pruss氏) That's a fine argument assuming the function is measurable. But what if it's not? Here is a strategy: Check if X1,X2,... fit with the relevant representative. If so, then guess according to the representative. If not, then guess π. (Yes, I realize that π not∈{0,1}.) Intuitively this seems a really dumb strategy. (引用終り) 1)上記二人の人が、関数の可測性について論じている 最初の例を使うと h(x):R^N→N と書ける 2)可測関数(可測写像)の説明は下記で、逆像が可測な関数で 逆像 N→R^N で、R^Nが無限次元空間だと、 >>612のように、ここ(無限次元空間)にはルベーグ測度がうまく入らない 3)だから、時枝では、ルベーグ測度がうまく入らないし、関数h(x)の可測も不成立で 結局、ルベーグ積分は、使えません 時枝の確率計算は、ルベーグ測度やルベーグ積分の上に乗っていないよ! どうするのこれ?www 4)Fubiniの定理だの、外測度だの、上滑り そもそも、ルベーグ測度が定義できないのに、外測度もクソも無い そもそも、ルベーグ積分が定義できないのに、Fubiniの定理もクソも無いw つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/715
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.044s