[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
463: 132人目の素数さん [] 2022/11/01(火) 15:40:02.72 ID:25yibjh9 >>441-442 レスありがとう スレ主です >昨日のID:V6kL7bYX氏の証明を絶賛致します 絶賛か あなたは、真面目な人なんだろうね?(^^ >438は単なる積測度の定義 >数学科の学生なら必修 >箱入り無数目とは無関係の基本 ふーん、定義は数学科では議論の一番最初でしょ? 議論の一番最後に、定義を書いたことに関心しているの? 一つ二つ質問していいかな? Q1)数学科の1年生か2年生かい? Q2)確率論の単位はまだ? 確率過程論はまだかな? Q3)>>443 の https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ Infinite Products of Probability Spaces J.P. McCarthy: Math Page より ”In proving such limit theorems, it is useful to be able to construct a probability space on which a sequence of independent random variables is defined in a natural way; specifically, as coordinates for a countable Cartesian product.” の”a sequence of independent random variables”とあることに気付いたかな? もしまだなら、”a sequence of independent random variables”は時枝記事を解明する重要キーワードだから、覚えておいてね (”a sequence of independent random variables”は、確率過程論の数学的対象そのものと言って良いのだが) http://rio2016.5ch.net/test/read.cgi/math/1666352731/463
468: 132人目の素数さん [] 2022/11/01(火) 16:55:06.43 ID:25yibjh9 さて、スレ主です 1) >>443 について、>>463にも書いたけど https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ Infinite Products of Probability Spaces J.P. McCarthy: Math Page より ”In proving such limit theorems, it is useful to be able to construct a probability space on which a sequence of independent random variables is defined in a natural way; specifically, as coordinates for a countable Cartesian product.” の”a sequence of independent random variables”とあることに気付いたかな? ”independent”だったら、他の箱を開けても、問題の箱の確率は不変ですよね?!!w 2) >>462 >・ iid 確率変数 X_i∈[0,1] (各X_iは[0,1]上の一様分布を実現) >の存在性を担保する確率空間こそが ([0,1]^N, F_N, μ_N) なのに そうその通りだろうね!w だけど、上記の通り”a sequence of independent random variables”だよ ”independent”だったら、他の箱を開けても、問題の箱の確率は不変ですよ?w つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/468
469: 132人目の素数さん [] 2022/11/01(火) 16:55:30.79 ID:25yibjh9 >>468 つづき 3) さて、そもそもの>>386で >>384-385より >>d:[0,1]^N → N は決定番号の写像であり、(d≦k) は非可測なので矛盾する。 > え、その証明はしないの? (引用終り) に戻る 確率空間の事象として、下記の Sergiu Hart氏 P2 Remark で、 Player 1 ”with probability 1 in game1”、”the xi independently and uniformly on [0, 1]”を採用しよう ”Ω = Π[n=1~∞]Ω_n = [0,1]×[0,1]×[0,1]×[0,1]×… (=[0,1]^N)”>>444 だったよね? Player 1の立場で、[0,1]→1(下記より。なお、Player 2の立場では[0,1]→0)となるよね 従って 下記類似設定では、”[1]×[1]×[1]×[1]×… (=[1]^N)”となるよね(Player 2の立場では、”[0]×[0]×[0]×[0]×… (=[0]^N)”) つまりは、”[1]×[1]×[1]×[1]×… (=[1]^N)”なるただ一つの元から d:[1]^N → N は決定番号の写像を作ることになる ここで、写像の値域Nが複数の値をとるならば、多価でしょ? この多価性をどうするの?w (くどいが、Player 2の立場では、”[0]×[0]×[0]×[0]×… (=[0]^N)”ですが) (参考) >>2 >>387 http://www.ma.huji.ac.il/hart/puzzle/choice.pdf Choice Games November 4, 2013 Sergiu Hart P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively. http://rio2016.5ch.net/test/read.cgi/math/1666352731/469
471: 132人目の素数さん [] 2022/11/01(火) 18:07:15.08 ID:25yibjh9 >>454-465 スレ主です レスありがとう >>466 > 大学院修士課程修了ですが何か? これは、御見それしました > 確率論と確率過程は3年および4年で履修しました ありがとう それなら話は早い > 専攻ではありませんがね それが何か? そもそも論は、>>1の時枝氏の記事でね 過去、何人か数学科生(含む卒)が来て 大半は、時枝不成立を主張したが ”なぜ不成立なのに、成立するように見えるか?”の説明はできなかった そして、”固定”だの”非可測集合による確率論(外測度を使うなどと宣う)” だのを言われて 去って行った 欧米文献では、>>1 https://mathoverflow と、>>2 Choice Games November 4, 2013 とが代表例です >>Q3) > 質問が無いようですが、忘れましたか? いや、”気付いたかな?”が質問です ”もしまだなら、”a sequence of independent random variables”は時枝記事を解明する重要キーワードだから、覚えておいてね” がメインの主張です あと、追加で Q4 >>1 の時枝記事についての意見というか立場ですか? 可能なら簡単に理由を付してもらえるとありがたい なお、上記のように、過去何人かの数学科生は不成立を主張していた (例外的に、成立の立場の人1名(名古屋大の数学科卒を名乗る人)がいたな) http://rio2016.5ch.net/test/read.cgi/math/1666352731/471
473: 132人目の素数さん [] 2022/11/01(火) 18:58:26.05 ID:25yibjh9 >>467 >私からも質問していいですか? いいよ >QⅠ.ヴィタリの非可測集合の構成とそれが非可測である証明は理解していますか? Yes >QⅡ.ヴィタリの非可測集合が、任意の実数ε>0について、[0,ε)の部分集合となるように取れることは理解していますか? Yes (蛇足だが、εは微小数のイメージだが、逆にいくらでも大きな数mで[0,m)とできる) (もし、εやmが無理数なら、[0,ε],[0,m](閉区間)とできる) >QⅢ. にもかかわらず、ヴィタリの非可測集合は、決して、{0}に出来ない理由を説明できますか? それは、https://en.wikipedia.org/wiki/Vitali_set に詳しい解説がある(この話は過去に書いているよ) 概略は下記(なお、厳密な定義や説明が、面倒なので記号の濫用をします) 1)非可測の前段として、ルベーグ可測が定義される(ここは ヴィタリ集合 https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 に詳しい説明がある) 2)R/Qを考える (ヴィタリ集合に説明があるので省略) 3)R/Qの代表系を区間[0,1]にとる いま、ヴィタリ集合Vとして、無理数v∈Vを考える [0,1]の範囲の有理数qで、v+qやv-q' を考える (ここに 0<q<1-v,-v<q<0, つまり[-v,1-v]の範囲の有理数qでv+qは、代表に取れない v+q not∈V) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/473
474: 132人目の素数さん [] 2022/11/01(火) 18:59:08.91 ID:25yibjh9 >>473 つづき 4)ヴィタリ氏は上記を逆手にとって、[-1.+1]の範囲の有理数qを全て集めて、∪V+qを作る ∪V+q を考えると、これは[-1,2]の範囲に収まる。一方で、∪V+q は上記の考察から、区間[0,1]の全ての実数を含む つまり[0.1]⊂∪V+q 5)いま、λ(S)を集合Sにルベーグ測度を与える関数とする(上記wikipedia通り) λ(∪V+q)=Σλ(V) で (なお、Σは、[-1.+1]の有理数qを全て数え上げて(可算無限)和を取る) よって 1<=Σλ(V)<=3 (<=3は[-1,2]の範囲に収まることから、1<=は内部に区間[0,1]の全ての実数を含むことから従う) 6)これは、λ(V)に0、有限、∞のいかなる値を付与しても矛盾。よって、λ(V)にはいかなる値(測度)も与えることができず、非可測集合を成す ここで、重要ポイントが二つ 1)全体集合Rにルベーグ可測が与えられていること 2)ルベーグ可測が平行移動に普遍で、ヴィタリ集合Vは非可算濃度で、Vの[-1.+1]の範囲の有理数qの平行移動で可算無限和Σλ(V)を作ること ここは押さえておきたいね なお、ソロベイの有名な可算理論モデルがあるが、上記ポイントの2)のどこかが成り立たないのでしょうね(詳しくないが) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/474
475: 132人目の素数さん [] 2022/11/01(火) 19:00:14.39 ID:25yibjh9 >>474 タイポ訂正 1)全体集合Rにルベーグ可測が与えられていること ↓ 1)全体集合Rにルベーグ測度が与えられていること http://rio2016.5ch.net/test/read.cgi/math/1666352731/475
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s