[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
760: 132人目の素数さん [] 2022/11/06(日) 09:05:16.52 ID:4rX/NHRo >>750 どうもありがとう スレ主です >>”non-conglomerableの意味は理解しました” とか >>落ちこぼれとは大違いだと思ったよ > せたぼん騙すのって簡単だったなw 初見で、Pruss氏の conglomerability assumption >>731 を理解しました>>672 というから、レベル高いと思った が、もしそれが数学科落ちこぼれくんだったら 何年も掛けて理解したってことだから それじゃやっぱり、大したことないんじゃね? しっかり理解したのなら、立派と思うけどねww それはともかく、下記>>701-702の説明を考えさせてくれたのは、お礼をいうよ ” a)確率上、開けた箱と開けてない箱とは、扱いが違う つまり、開けた箱は確率変数でなくなり、開けていない箱は依然確率変数だ” ”6)しかし、決定番号類似で、出題がn1,n2∈N(自然数 非正則分布>>13)とする 箱を開けていない状況では、n1>n2 or n1<n2 の二択だから、勝つ確率1/2 が直感的判断だろう さて、箱1を開けn1を知る。この瞬間に状況が変わる 箱2は、開けていないので、確率変数X2のままだから、全ての自然数を取り得る 従って、直感的には、回答者の勝率0 (”箱を同時に開ければどうなるか”の問題はあるが、この場合そもそも確率論にどうのせるかから始まるだろう) ”大数の法則”? さあ? どうなのでしょう? N(自然数)は非正則分布だから、既存の確率論に乗るかどうか?” ”7)さてさて、決定番号も自然数同様に上限がなく、全事象Ωが発散している非正則分布>>13であることは明らかだ だから、上記6)類似でしょ だから、時枝氏の論法(下記)も、同様に開けた箱と、未開封の箱で、確率上の扱いが異なると考えると(上記3)) 当たるように見えて当たらないことの説明が付くと思う” (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1666352731/760
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 242 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.015s