[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
540: 132人目の素数さん [sage] 2022/11/03(木) 00:29:12.25 ID:7Xhr0F/H 以上を踏まえた上で、スレ主の発言を見てみる。 >あなたが>>443で紹介した >J.P. McCarthy ”Infinite Products of Probability Spaces” > https://jpmccarthymaths.com/2012/01/08/infinite-products-of-probability-spaces/ >>468 >にあるように、無限積の確率空間に対して確率測度を与えられるよ >つまり、非可測ではない >また、確率を定義できる これ、完全に支離滅裂。まず、今回の無限直積 確率空間 ([0,1]^N,F_N,μ_N) は、 上記のリンク先に従って正式に構成可能である。 つまり、無限積の確率空間に対して確率測度 μ_N が実際に定義できている。ここでスレ主は、 >つまり、非可測ではない と言っているが、意味不明で支離滅裂である。μ_N が定義できたからといって、 A = { (s,i)∈Ω|d(s^{i})≦max{d(s^{j})|1≦j≦100, j≠i } } という集合が「非可測ではない」ことにはならないw そもそも、A は無限直積 確率空間 ([0,1]^N,F_N,μ_N) の中で定義される集合ですらない。 A は別の確率空間(Ω,F,P)の中で定義される集合である。この時点で既に、スレ主は盛大に何かを勘違いしている。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/540
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 462 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.017s