[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
459: 2022/11/01(火)12:36 ID:sIOgpcGr(24/28) AAS
X_1 だけなら、そのような(Ω,F,P)の存在性は自明である。
具体的には、(Ω,F,P):=([0,1],F_1,μ_1) (1次元のルベーグ測度空間)と置き、
そして、X_1:Ω→[0,1] を X_1(t):=t (t∈[0,1]) と置けばよい。
X_1,X_2 の2つでも、そのような(Ω,F,P)の存在性は自明である。
具体的には、(Ω,F,P):=([0,1]^2,F_2,μ_2) (2次元のルベーグ測度空間)と置き、
X_i:Ω→[0,1] を X_1((t_1,t_2)):=t_1, X_2((t_1,t_2)):=t_2 (t_1,t_2∈[0,1])
と置けばよい。こうすると、X_1,X_2 は(Ω,F,P)上で iid 確率変数になり、
各X_iは[0,1]上の一様分布を実現している。
X_1は[0,1]^2の第一成分を取り出すという射影であり、
X_2は[0,1]^2の第二成分を取り出すという射影である。
「独立同分布」における「独立」の部分を担保しているのが、
この「第 i 成分を取り出す射影である」という性質である
(厳密には、確率測度が直積測度として与えられていることも重要だが)。
上下前次1-新書関写板覧索設栞歴
あと 543 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.009s