[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
410
: 2022/10/31(月)23:02
ID:V6kL7bYX(34/47)
AA×
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
410: [sage] 2022/10/31(月) 23:02:39.23 ID:V6kL7bYX さて、Poly は無限集合なので、異なる可算無限個の v_i∈Poly を取れば、 (T^[k]∩[0,1)^N) [+] Poly が直和であることから、 { (T^[k]∩[0,1)^N) [+] v_i }_{i≧1} は互いに素である。ここで、B⊂T^[k]∩[0,1)^N なる B∈F_N を任意に取る。 すると、B [+] v_i ∈ F_N である。また、B [+] v_i ⊂ (T^[k]∩[0,1)^N) [+] v_i により、 { B [+] v_i }_{i≧1} は互いに素である。また ∪[i=1〜∞] (B [+] v_i) ⊂[0,1)^N である。 両辺の μ_N を考えると、 Σ[i=1〜∞] μ_N(B [+] v_i) ≦ μ_N([0,1)^N) = 1 である。さらに、μ_N(B [+] v_i) = μ_N(A) である。よって、Σ[i=1〜∞] μ_N(B) ≦ 1 となったので、μ_N(B)=0 となるしかない。B ⊂T^[k]∩[0,1)^N なる B∈F_N は任意だったから、 μ_{N*}(T^[k]∩[0,1)^N)=0 である。よって、μ_{N*}(T^[k])=0 である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/410
さて は無限集合なので異なる可算無限個の を取れば が直和であることから は互いに素であるここで なる を任意に取る すると であるまた により は互いに素であるまた である 両辺の を考えると であるさらに であるよって となったので となるしかない なる は任意だったから であるよって である
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 592 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.026s