[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
399(2): 2022/10/31(月)22:46 ID:V6kL7bYX(26/47) AAS
定理:任意の A∈F_N と任意の k≧0 に対して、A^[k]∈F_N であり、
しかも μ_N(A^[k]) ≦ μ_N(A^[k+1]) (k≧0)である。
証明:A∈F_N に対して A^[k]∈F_N が成り立つことの証明は省略する。
次に、A∈F_N を任意に取る。μ_N(A^[k]) ≦ μ_N(A^[k+1]) (k≧0)を示したい。
一般に (A^[k])^[l]=A^[k+l] なので、μ_N(A) ≦ μ_N(A^[1]) が示せれば十分である。
まず、A ⊂ [0,1]A^[1] が成り立つ。また、A, [0,1]A^[1]∈F_N である。よって、
μ_N(A) ≦ μ_N([0,1]A^[1]) であり、そして μ_N([0,1]A^[1])=μ_N(A^[1]) である。
よって、μ_N(A) ≦ μ_N(A^[1]) である。
上下前次1-新書関写板覧索設栞歴
あと 603 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.011s