[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
399: 132人目の素数さん [sage] 2022/10/31(月) 22:46:36.79 ID:V6kL7bYX 定理:任意の A∈F_N と任意の k≧0 に対して、A^[k]∈F_N であり、 しかも μ_N(A^[k]) ≦ μ_N(A^[k+1]) (k≧0)である。 証明:A∈F_N に対して A^[k]∈F_N が成り立つことの証明は省略する。 次に、A∈F_N を任意に取る。μ_N(A^[k]) ≦ μ_N(A^[k+1]) (k≧0)を示したい。 一般に (A^[k])^[l]=A^[k+l] なので、μ_N(A) ≦ μ_N(A^[1]) が示せれば十分である。 まず、A ⊂ [0,1]A^[1] が成り立つ。また、A, [0,1]A^[1]∈F_N である。よって、 μ_N(A) ≦ μ_N([0,1]A^[1]) であり、そして μ_N([0,1]A^[1])=μ_N(A^[1]) である。 よって、μ_N(A) ≦ μ_N(A^[1]) である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/399
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 603 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s