[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
115: 132人目の素数さん [] 2022/10/26(水) 20:15:56.48 ID:b4wD2Jth >>114 つづき 懐疑派2 DR Alexander Pruss氏 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis <回答者 DR Alexander Pruss氏> Here's an amusing thing that may help see how measurability enters into these things. Consider a single sequence of infinitely many independent fair coin flips. Our state space is Ω={0,1}^N, corresponding to an infinite sequence (Xi)∞i=0 of i.i.d.r.v.s with P(Xi=1)=P(Xi=0)=1/2. Start with P being the completion of the natural product measure on Ω. That's a fine argument assuming the function is measurable. But what if it's not? Here is a strategy: Check if X1,X2,... fit with the relevant representative. If so, then guess according to the representative. If not, then guess π. (Yes, I realize that π not∈{0,1}.) Intuitively this seems a really dumb strategy. つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/115
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 887 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s