[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
162: 132人目の素数さん [] 2022/09/06(火) 07:53:09.07 ID:+kdNx5e4 >>159 補足 > 4)この場合、同様に中央値も m/2→∞ に発散している > この状況で、決定番号が有限でおさまるはずがない(幼稚な妄想はいい加減やめましょうね) いま、101個の決定番号があり、これを d0,d1,d2,d3,・・・,d100と書く di<=di+1 (i=0~100)(小から大へ整列している)とする この中央値は、d50だ あきらかに、d50は有限 一方、本来中央値は 上記のように m/2→∞ に発散しているので矛盾! つまり、有限の101個の決定番号があり、これを d0,d1,d2,d3,・・・,d100とすることはできる その人の人為として だが、それに基づく確率計算手法を、数学として正当化することはできない (∵ その手法は、コルモゴロフの確率公理を満たしていない(非正則分布を使っているから)) (参考) 純粋・応用数学(含むガロア理論)8 より 時枝記事抜粋 https://rio2016.5ch.net/test/read.cgi/math/1620904362/403 s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 開けた箱に入った実数を見て,代表の袋をさぐり, s^1~s^(k-l),s^(k+l)~s^100の決定番号のうちの最大値Dを書き下す. D >= d(s^k) を仮定しよう.この仮定が正しい確率は99/100, (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1660377072/162
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 840 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.011s