[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
142: 132人目の素数さん [] 2022/09/02(金) 23:43:39.49 ID:K8gWPGVv >>132 補足 ここ、下記のDR Tony Huynh のAnswer 2が参考になるな(私訳をつけた) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis Answer 2 (answered Dec 9, 2013 Tony Huynh PhD in the Department of Combinatorics & Optimization at the University of Waterloo.) I also like this version of the riddle. To answer the actual question though, I would say that it is not possible to guess incorrectly with probability only 1/N, even for N=2. In order for such a question to make sense, it is necessary to put a probability measure on the space of functions f:N→R. Note that to execute your proposed strategy, we only need a uniform measure on {1,…,N}, but to make sense of the phrase it fails with probability at most 1/N, we need a measure on the space of all outcomes. The answer will be different depending on what probability space is chosen of course. Here's a concrete choice for a probability space that shows that your proposal will fail. Suppose that for each index i we sample a real number Xi from the normal distribution so that the Xis are independent random variables. If there is only person, no matter which boxes they view, they gain no information about the un-opened boxes due to independence. Thus, their probability of guessing correctly is actually 0, not (N-1)/N, say. If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/142
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 860 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.012s