[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
1: 132人目の素数さん [] 2022/08/13(土) 16:51:12.04 ID:d42KNd2H 前スレが1000近くなったので、新スレを立てる 前スレ 箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/ (参考) 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/401 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis (Denis質問) I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. (Pruss氏) The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate. (Huynh氏) If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/1
2: 132人目の素数さん [] 2022/08/13(土) 16:52:10.41 ID:d42KNd2H つづき mathoverflowは時枝類似で ・Denis質問でも、もともと”but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.” となっています。Denisの経歴を見ると、彼は欧州の研究所勤務で、other peopleは研究所の確率に詳しい人でしょう ・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています http://www.ma.huji.ac.il/hart/ Sergiu Hart http://www.ma.huji.ac.il/hart/#puzzle Some nice puzzles: http://www.ma.huji.ac.il/hart/puzzle/choice.pdf? Choice Games November 4, 2013 P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively. Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw) Some nice puzzles Choice Games と、”おちゃらけ”であることを示している かつ、”P2 Remark.”で当てられないと暗示している また、”A similar result, but now without using the Axiom of Choice.GAME2” で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している つづく http://rio2016.5ch.net/test/read.cgi/math/1660377072/2
3: 132人目の素数さん [] 2022/08/13(土) 16:52:30.10 ID:d42KNd2H つづき だめなのは、時枝記事だ。まあ、題名はおちゃらけだが、もっとはっきり、数学パズルとした方がよかったろう 非可測で、ヴィタリに言及しているのが、ミスリードだ Hart氏の”A similar result, but now without using the Axiom of Choice.GAME2”のように、選択公理不使用のGAME2があるから、 ソロベイの定理(下記 wikipedia ご参照)から、ヴィタリのような非可測は否定される conglomerabilityか、あるいは総和ないし積分が発散する非正規な分布により、可測性が保証されないと考えるべき 時枝氏は、確率変数の無限族の独立性が理解できていないのも痛いね https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 ヴィタリ集合が存在し、それらの存在は選択公理の仮定の下で示される。1970年にロバート・ソロヴェイ(英語版)は、到達不能基数の存在を仮定することにより、全ての実数の集合がルベーグ可測となるような(選択公理を除いた)ツェルメロ・フレンケル集合論のモデルを構築した[2]。 (引用終り) テンプレは以上です http://rio2016.5ch.net/test/read.cgi/math/1660377072/3
4: 132人目の素数さん [] 2022/08/13(土) 17:01:06.05 ID:d42KNd2H 前スレより転載 https://rio2016.5ch.net/test/read.cgi/math/1629325917/910 >>899 補足 a)いま、トランプに似たゲームを考えよう カードが、1~100の番号で100枚のカードが伏せられている2人ゲーム 1枚ずつカードを取って、大きい数の人が勝ち 1)もし、99を引けば、相手が勝つのは100だけだから、自分の勝率99/100 2)逆に、2を引けば、相手が負けるのは1の場合だけだから、自分の勝率1/100 3)もし、自分のカードも見ることが許されず、”ワンツースリー”の掛け声で同時開示をするルールならば、勝率1/2 4)勝率1/2は、ゲームを多数繰り返すときの確率計算でもある b)いま、カードの番号の上限を十分大きな有限のnとする 1~100と同様に考えることができる 1)もし、0.99nを引けば、相手が勝つのは0.99n超えの場合だけだから、自分の勝率99/100 2)逆に、0.01nを引けば、相手が負けるのは0.01n未満の場合だけだから、自分の勝率1/100 3)もし、自分のカードも見ることが許されず、”ワンツースリー”の掛け声で同時開示をするルールならば、勝率1/2 4)勝率1/2は、ゲームを多数繰り返すときの確率計算でもある c)いま、カードの番号の上限が有限のnでなく、n→∞を考える(非正則分布の場合) 1)そもそも、0.99nとか0.01nなる概念が存在しない。発散しているから 2)もし、自分のカードを事前に開示するとして、それをa(有限)としよう。勝てる確率は0 (上限が発散しているから、相手の数が大きい確率は1になる? 3)そして、自分のカードも見ることが許されず、”ワンツースリー”の掛け声で同時開示をするルールならば、勝率1/2? 4)勝率1/2は、ゲームを多数繰り返すときの確率計算でもある?? 5)いやいや、そもそも、上記の2)~4)項は、正則分布ならば正当化できるが、非正則分布での確率計算では正当化できていない (測度論的な確率論として、正当化されていない) これが、時枝記事のトリックです http://rio2016.5ch.net/test/read.cgi/math/1660377072/4
5: 132人目の素数さん [] 2022/08/13(土) 19:08:24.38 ID:J0MuROYH 糞スレ http://rio2016.5ch.net/test/read.cgi/math/1660377072/5
6: 132人目の素数さん [] 2022/08/13(土) 19:10:15.14 ID:d42KNd2H ありがとう http://rio2016.5ch.net/test/read.cgi/math/1660377072/6
7: 132人目の素数さん [] 2022/08/13(土) 19:38:34.64 ID:5P0bgKoJ >>4 バカには発言権が無いので黙ってな バカじゃないと言うなら100人の詐欺師のうち何人がハズレ列を引くか答えてみな http://rio2016.5ch.net/test/read.cgi/math/1660377072/7
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 995 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.016s