[過去ログ] ガロア第一論文及びその関連の資料スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
824
(1): 2023/02/26(日)16:13 ID:ZAlHQVD3(9/24) AAS
>>823
つづき

この考え方は、代数曲線(次元が 2 の多様体)に対しては完全に成り立つ。現代のことばでは、1890年から1910年までの代数幾何学のイタリア学派(英語版)の一つの中心的な結果は、曲面の分類の一部とあわせ、すべての曲面 X は、ある曲線 C が存在して積 P1 × C か、もしくは極小曲面 Y のどちらかに双有理同値である。[2] 2つの場合は互いに排他的であり、Y は存在するとしたら一意である。Y が存在すると、X の極小モデルと呼ばれる。

双有理不変量
詳細は「小平次元」を参照
「双有理不変量」も参照
まず、どのようにして有理的でない代数多様体が存在するかを示す方法が明らかではない。これを証明するためには、代数多様体の何らかの双有理不変量を作ることが必要である。
省8
825
(3): 2023/02/26(日)16:14 ID:ZAlHQVD3(10/24) AAS
>>824
つづき

<一般型の説明>
外部リンク:ja.wikipedia.org
代数幾何学では、小平次元 (Kodaira dimension)(標準次元 (canonical dimension) とも呼ばれる) κ(X) で射影多様体 X の標準モデル (canonical model) の大きさを測る。

これを d-標準写像と言う。多様体 X の標準環 R(KX) は次数付き環で

省7
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.052s