[過去ログ]
ガロア第一論文及びその関連の資料スレ (1002レス)
ガロア第一論文及びその関連の資料スレ http://rio2016.5ch.net/test/read.cgi/math/1615510393/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
880: 132人目の素数さん [] 2023/02/27(月) 13:24:56.32 ID:MGx5FJPo >>877 >>いま”乗数イデアル”を検索しても、あまり情報がヒットしない ↓ブレイクスルー賞に値する論文がこの二つ Guan, Qi'an; Zhou, Xiangyu A proof of Demailly's strong openness conjecture. Ann. of Math. (2) 182 (2015), no. 2, 605–616. Guan, Qi'an; Zhou, Xiangyu Effectiveness of Demailly's strong openness conjecture and related problems. Invent. Math. 202 (2015), no. 2, 635–676. http://rio2016.5ch.net/test/read.cgi/math/1615510393/880
885: 132人目の素数さん [] 2023/02/27(月) 14:15:05.40 ID:SbnoCAdL >>880 情報ありがとう 参考にさせて頂きます! http://rio2016.5ch.net/test/read.cgi/math/1615510393/885
895: 132人目の素数さん [] 2023/02/27(月) 21:41:15.74 ID:k+s6pKPe >>880 下記は、論文でなく ”A short course on multiplier ideals”のレクチャーらしい ざっと読んだけど、ほとんど分からなかったw けど、Introduction読むと、 ”The revolutionary work of Hacon-McKernan, Takayama and Birkar-Cascini-Hacon-McKernan ([14], [15], [28], [3]) ” とあるから、流れは合っているね https://arxiv.org/abs/0901.0651 [Submitted on 6 Jan 2009] A short course on multiplier ideals Robert Lazarsfeld These notes are the write-up of my 2008 PCMI lectures on multiplier ideals. They aim to give an introduction to the algebro-geometric side of the theory, with an emphasis on its global aspects. The focus is on concrete examples and applications. The lectures take into account a number of recent perspectives, including adjoint ideals and the resulting simplifications in Siu's theorem on plurigenera in the general type case. While the notes refer to my book [PAG] and other sources for some technical points, the conscientious reader should arrive at a reasonable grasp of the machinery after working through these lectures. https://arxiv.org/pdf/0901.0651.pdf Introduction These notes are the write-up of my 2008 PCMI lectures on multiplier ideals. They aim to give an introduction to the algebro-geometric side of the theory, with an emphasis on its global aspects. Besides serving as warm-up for the lectures of Hacon, my hope was to convey to the audience a feeling for the sorts of problems for which multiplier ideals have proved useful. Thus I have focused on concrete examples and applications at the expense of general theory. While referring to [21] and other sources for some technical points, I have tried to include sufficient detail here so that the conscientious reader can arrive at a reasonable grasp of the machinery by working through these lectures. つづく http://rio2016.5ch.net/test/read.cgi/math/1615510393/895
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s