[過去ログ]
ガロア第一論文及びその関連の資料スレ (1002レス)
ガロア第一論文及びその関連の資料スレ http://rio2016.5ch.net/test/read.cgi/math/1615510393/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
857: 132人目の素数さん [] 2023/02/26(日) 19:55:38.72 ID:ZAlHQVD3 >>856 つづき https://en.wikipedia.org/wiki/Multiplier_ideal Multiplier ideal Algebraic geometry In algebraic geometry, the multiplier ideal of an effective Q -divisor measures singularities coming from the fractional parts of D. Multiplier ideals are often applied in tandem with vanishing theorems such as the Kodaira vanishing theorem and the Kawamata?Viehweg vanishing theorem. Let X be a smooth complex variety and D an effective Q -divisor on it. Let μ :X'→ X be a log resolution of D (e.g., Hironaka's resolution). 下記FUJINOより抜粋 P6 5. Resolution Lemma We think that one of the most useful log terminal singularities is divisorial log terminal (dlt, for short), which was introduced by Shokurov (see [FA, (2.13.3)]). We defined it in Definition 4.1 above. By Szab´o’s work [Sz], the notion of dlt coincides with that of weakly Kawamata log terminal (wklt, for short). P7 By combining Theorem 5.1 with the usual desingularization arguments, we can recover the original Resolution Lemma without any difficulties. This means that, first, we use Hironaka’s desingularization theorem suitably, next, we apply Theorem 5.1 below, then we can recover Szab´o’s results. つづく http://rio2016.5ch.net/test/read.cgi/math/1615510393/857
858: 132人目の素数さん [] 2023/02/26(日) 19:55:59.27 ID:ZAlHQVD3 >>857 つづき http://www.math.nagoya-u.ac.jp/~fujino/what-HP.pdf WHAT IS LOG TERMINAL ? 2004/4/23 OSAMU FUJINO Abstract. In this paper, we explain the subtleties of various kinds of log terminal singularities. We focus on the notion of divisorial log terminal singularities, which seems to be the most useful one. We explain Szab´o’s resolution lemma, the notion of log resolution, adjunction formula for divisorial log terminal pairs, and so on. We also collect miscellaneous results and examples on singularities of pairs in the log MMP that help us understand log terminal singularities. Contents 1. What is log terminal? 1 2. Preliminaries on Q-divisors 3 3. Singularities of pairs 5 4. Divisorial log terminal 6 5. Resolution Lemma 6 6. Whitney umbrella 8 7. What is a log resolution? 10 8. Examples 12 9. Adjunction for dlt pairs 14 10. Miscellaneous comments 15 References 16 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1615510393/858
861: 132人目の素数さん [] 2023/02/26(日) 22:37:44.59 ID:ZAlHQVD3 >>859 >乗数イデアル層の解明が進んだこの10年であった ああ、ありがとう 乗数イデアル層が、重要キーワードなのか 「Siu による乗数イデアルを用いた巧妙な拡張定理の手法 [Si1] 」>>792 藤野 から、下記PDFがヒットしたので貼る Y.-T. Siu, Invariance of plurigenera, Invent.Math. 134 (1998), no. 3, 661?673. https://people.math.harvard.edu/~siu/siu_reprints/siu_plurigenera_invent1998.pdf Invent. math. 134, 661-673 (1998) DOI 10.1007/s002229800870 Invariance of plurigenera Yum-Tong Siu* Department of Mathematics, Harvard University, Cambridge, MA 02138, USA P2 multiplier ideal sheaf >>857再録 https://en.wikipedia.org/wiki/Multiplier_ideal Multiplier ideal In commutative algebra, the multiplier ideal associated to a sheaf of ideals over a complex variety and a real number c consists (locally) of the functions h such that |h|^2/Σ|fi^2|^c is locally integrable, where the fi are a finite set of local generators of the ideal. Multiplier ideals were independently introduced by Nadel (1989) (who worked with sheaves over complex manifolds rather than ideals) and Lipman (1993), who called them adjoint ideals. Multiplier ideals are discussed in the survey articles Blickle & Lazarsfeld (2004), Siu (2005), and Lazarsfeld (2009). Algebraic geometry In algebraic geometry, the multiplier ideal of an effective Q -divisor measures singularities coming from the fractional parts of D. Multiplier ideals are often applied in tandem with vanishing theorems such as the Kodaira vanishing theorem and the Kawamata?Viehweg vanishing theorem. Let X be a smooth complex variety and D an effective Q -divisor on it. Let μu :X'→ X be a log resolution of D (e.g., Hironaka's resolution). (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1615510393/861
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s