[過去ログ]
ガロア第一論文及びその関連の資料スレ (1002レス)
ガロア第一論文及びその関連の資料スレ http://rio2016.5ch.net/test/read.cgi/math/1615510393/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
64: 132人目の素数さん [sage] 2023/01/02(月) 23:42:09.92 ID:qZFMMNjk >>63 つづき 例 下記の例において、 F は一般の体、 C, R, Qはそれぞれ複素数体、実数体 、有理数体とする。また、 F(a) は体 F に元 a を添加した体、即ち F の全ての元と a をふくむ最小の体であるとする。 ・Gal(F/F)は恒等写像のみからなる自明な群。 ・Aut(R/Q)は自明な群であることが知られている。実際、Rの自己同型は順序を保つことが示せるので、必然的に恒等写像となる。 ・Aut(C/Q) は無限群になることが知られている。 ・Gal(Q(√2)/Q) は、恒等写像および、√2と-√2を入れ替える写像からなる。 ・K = Q(2^1/3)とするとき、Aut(K/Q)は自明な群となる。これはKが正規拡大でない(x^3 ? 2の根を全て含んでいない)ためである。これはKが分解体ではないからと言いかえることもできる。 ・ω を1の3乗根とするとき、拡大体L = Q(2^1/3, ω)は、多項式x^3 - 2のQ上の分解体となり、自己同型群は、3次の置換群 S3と同型となる。 https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E6%8B%A1%E5%A4%A7 ガロア拡大(ガロアかくだい、英: Galois extension)は、体の代数拡大 E/F であって、正規拡大かつ分離拡大であるもののことである。あるいは同じことだが、E/F が代数拡大であって、自己同型群 Aut(E/F) による固定体(英語版)がちょうど基礎体 F であるもののことである。ガロア拡大は、ガロア群を持ち、ガロア理論の基本定理に従うという点で、重要である[1]。 エミール・アルティンの結果によって、ガロア拡大を次のように構成できる。E が与えられた体で、G が E の自己同型からなるある有限群で固定体が F のとき、E/F はガロア拡大である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1615510393/64
65: 132人目の素数さん [sage] 2023/01/02(月) 23:42:31.06 ID:qZFMMNjk >>64 つづき ガロア拡大の特徴づけ エミール・アルティンの重要な定理により、有限拡大 E/F に対し、以下の各ステートメントは E/F がガロア拡大であるというステートメントと同値である: ・E/F は正規拡大かつ分離拡大である。 ・E は F に係数を持つ分離多項式の分解体である。 ・|Aut(E/F)| = [E:F], つまり、自己同型の個数は拡大次数と等しい。 他の同値なステートメントとして以下がある: 略 https://ja.wikipedia.org/wiki/%E8%87%AA%E6%98%8E%E7%BE%A4 自明群、自明な群 (trivial group)、単位群 はただ1つの元からなる群である。すべてのそのような群は同型であるので、英語などではしばしば定冠詞をつけて the trivial group などと呼ばれる。自明群のただ1つの元は単位元であるので普通 0, 1, e のように文脈に応じて表記される。群の演算が * であれば e * e = e によって定義される。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1615510393/65
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.155s*