[過去ログ]
ガロア第一論文及びその関連の資料スレ (1002レス)
ガロア第一論文及びその関連の資料スレ http://rio2016.5ch.net/test/read.cgi/math/1615510393/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
526: 132人目の素数さん [] 2023/02/17(金) 16:03:57.80 ID:PDN8ps3Q >>489 >ちなみに、相互法則の重要性は単に整数論だけに閉じたものではないようで、ある種の >相反性あるいは双対性を表しているものとして捉えられているもののようです。 関連追加 https://en.wikipedia.org/wiki/Quadratic_reciprocity Quadratic reciprocity より References ・Hilbert, David (1897), "Die Theorie der algebraischen Zahlkorper", Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 4: 175?546, ISSN 0012-0456 ((どうも上記の英訳らしい) Hilbert, David (1998), The theory of algebraic number fields, Berlin, New York: Springer-Verlag, ISBN 978-3-540-62779-1, MR 1646901) (独語) https://gdz.sub.uni-goettingen.de/download/pdf/PPN37721857X_0004/PPN37721857X_0004.pdf Werk Titel: Jahresbericht der Deutschen Mathematiker-Vereinigung Verlag: Georg Reimer Jahr: 1894/95 Kollektion: Mathematica Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Gottingen Werk Id: PPN37721857X_0004 PURL: http://resolver.sub.uni-goettingen.de/purl?PPN37721857X_0004 (PDFのP182) Die Theorie der algebraischen Zahlkorper David Hilbert. 目次 (以下のページは目次の通り) Cap. XXVII §122. Das Reciprocitatsgesets fur quqdratsche Reste ・・・384 Cap. XXVIII Das Reciprocitatsgesetz fur Ιte Potenzreste im regularen Kreiskorper. §154. Das Reciprocitatsgesetz fur Ιte Potenzreste und die Erganzungssatze ・・・470 §157. Ein besonderer Fall des Reciprocitatsgesetz fur zwei Primideale ・・・479 §158. Das Vorhandensein gewisser Hulfsprimideal, fur weiche Reciprocitatsgesetz gilt ・・・482 §159. Beweis des ersten Erganzungsatzes zum Reciprocitatsgesetz ・・・484 §160. Beweis des Reciprocitatsgesetzes zweishen zwei beliebigen Primidealen ・・・485 §161. Beweis des zweishen Erganzungsatzes zum Reciprocitatsgesetz ・・・488 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1615510393/526
529: 132人目の素数さん [] 2023/02/17(金) 16:32:18.19 ID:PDN8ps3Q >>526 追加 >https://en.wikipedia.org/wiki/Quadratic_reciprocity >Quadratic reciprocity <関連追加引用> History and alternative statements The theorem was formulated in many ways before its modern form: Euler and Legendre did not have Gauss's congruence notation, nor did Gauss have the Legendre symbol. In this article p and q always refer to distinct positive odd primes, and x and y to unspecified integers. There is no kind of reciprocity in the Hilbert reciprocity law; its name simply indicates the historical source of the result in quadratic reciprocity. Unlike quadratic reciprocity, which requires sign conditions (namely positivity of the primes involved) and a special treatment of the prime 2, the Hilbert reciprocity law treats all absolute values of the rationals on an equal footing. Therefore, it is a more natural way of expressing quadratic reciprocity with a view towards generalization: the Hilbert reciprocity law extends with very few changes to all global fields and this extension can rightly be considered a generalization of quadratic reciprocity to all global fields. つづく http://rio2016.5ch.net/test/read.cgi/math/1615510393/529
531: 132人目の素数さん [] 2023/02/17(金) 16:46:43.65 ID:PDN8ps3Q >>501 >相互法則 ああ、これおっちゃんか! お元気そうで、なによりです 相互法則関連は >>526以下>>530までね http://rio2016.5ch.net/test/read.cgi/math/1615510393/531
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s