[過去ログ]
ガロア第一論文及びその関連の資料スレ (1002レス)
ガロア第一論文及びその関連の資料スレ http://rio2016.5ch.net/test/read.cgi/math/1615510393/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
306: 132人目の素数さん [sage] 2023/02/09(木) 23:47:55.10 ID:w492Wd/Q >>160 >モンストラス・ムーンシャイン 追加 https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%B9%E3%83%BB%E3%83%A0%E3%83%BC%E3%83%B3%E3%82%B7%E3%83%A3%E3%82%A4%E3%83%B3 モンストラス・ムーンシャイン 歴史 1980年、オリバー・アトキン(英語版)(A. Oliver L. Atkin)とポール・フォング(Paul Fong)とステファン・スミス(Stephen D. Smith)は、そのような次数付き表現が存在し、計算機での計算することで、トンプソンの発見した境界の差異を無視すると(upto) M の表現の(次元の)中へ j の係数が分解することを示した。イーゴル・フレンケル(英語版)(Igor Frenkel)とジェームズ・レポウスキー(英語版)(James Lepowsky)は、明確に、表現を構成し、マッカイ・トンプソン予想が有効であるという答えを与えた。さらに彼らは、構成したムーンシャイン加群 V^# と呼ばれるベクトル空間が、頂点作用素代数(英語版)(vertex operator algebra)の加法構造を持ち、その自己同型群が正確に M に一致することを示した。 https://en.wikipedia.org/wiki/Igor_Frenkel Igor Frenkel Mathematical work In collaboration with James Lepowsky and Arne Meurman, he constructed the monster vertex algebra, a vertex algebra which provides a representation of the monster group.[3][4] Around 1990, as a member of the School of Mathematics at the Institute for Advanced Study, Frenkel worked on the mathematical theory of knots, hoping to develop a theory in which the knot would be seen as a physical object. He continued to develop the idea with his student Mikhail Khovanov, and their collaboration ultimately led to the discovery of Khovanov homology, a refinement of the Jones polynomial, in 2002.[5] A detailed description of Igor Frenkel's research over the years can be found in "Perspectives in Representation Theory". つづく http://rio2016.5ch.net/test/read.cgi/math/1615510393/306
307: 132人目の素数さん [sage] 2023/02/09(木) 23:48:19.95 ID:w492Wd/Q >>306 つづき https://en.wikipedia.org/wiki/Edward_Frenkel Edward Frenkel Edward Vladimirovich Frenkel 1968 Russian-American mathematician working in representation theory, algebraic geometry, and mathematical physics. He is a professor of mathematics at University of California, Berkeley, a member of the American Academy of Arts and Sciences,[1] and author of the bestselling book Love and Math.[2] https://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%89%E3%83%AF%E3%83%BC%E3%83%89%E3%83%BB%E3%83%95%E3%83%AC%E3%83%B3%E3%82%B1%E3%83%AB エドワード・フレンケル 1968年5月2日 - ベストセラーの書籍『Love and Math』(日本語版:『数学の大統一に挑む』)の著者である[2]。 数学上の業績 ニコライ・レシェーツキン(英語版)と共に、フレンケルはW-代数と量子アフィン代数(英語版)の表現のq指標を導入した。 フレンケルの最近の業績は、ラングランズ・プログラムと表現論、可積分系、幾何学そして物理学とのつながりに集中している。デニス・ゲイツゴリとカリ・ヴィロネン(英語版)と共に、フレンケルは一般線型群GL(n)に対する幾何学的ラングランズ予想を証明した。ロバート・ラングランズとゴ・バオ・チャウとの共同研究により、保形表現の関手性と跡公式への新たなアプローチを提案した。フレンケルはまた、(特にエドワード・ウィッテンとの共同研究により)、幾何学的ラングランズ対応と場の量子論における双対性の間の関係性を追求している。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1615510393/307
318: 132人目の素数さん [sage] 2023/02/10(金) 21:11:28.36 ID:t24JvS7F >>306 追加 >頂点作用素代数(英語版) (参考) https://www.ms.u-tokyo.ac.jp/~yasuyuki/ 河東泰之 東京大学大学院数理科学研究科・教授 https://www.ms.u-tokyo.ac.jp/~yasuyuki/others.htm 河東泰之の雑文リスト https://www.ms.u-tokyo.ac.jp/~yasuyuki/msj05.pdf [37] 共形場理論と作用素環,頂点作用素代数, 日本数学会2005年年会企画特別講演,2005年3月. 河東泰之 東京大学大学院数理科学研究科 前置き 場の量子論はもちろん物理学の理論である.そこに現れる数学的構造が数学の立場からも 大変興味深いものであるため,多くの数学者がそれに興味を持っている.ここで取り上げ るのは,共形場理論と呼ばれる,特に高い対称性を持つ場合の理論である.この理論を, 無限次元代数系を用いて数学的に研究しようとする流儀が二つある.一つは,作用素環の 族を用いる,代数的場の量子論と呼ばれるもの,もう一つは頂点作用素代数の理論であ る.この二つの理論の関係,相互に与えた影響について説明することがこの講演の目的で ある.一般に「量子何とか」と呼ばれる数学に興味はあるが,これら二つの理論について はどちらもよく知らない,という人を主なターゲットにして話をしたい.ここでは,物理 的なことはあまり表に出さず,代数系とその表現という見方を中心に説明していく.なお この二つは,日本数学会の分科会で分けるとそれぞれ函数解析学と代数学に属しており, 一見まったく別の分野のようだが,もともと同じ対象を数学的に公理付けする際に違う流 儀を取っているというだけのことで,とてもよく似たものであることを強調しておきた い.(これは当然のことであり,似ていなかったら,少なくともどちらかの考え方が誤っ ているのである.), つづく http://rio2016.5ch.net/test/read.cgi/math/1615510393/318
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s