[過去ログ]
ガロア第一論文及びその関連の資料スレ (1002レス)
ガロア第一論文及びその関連の資料スレ http://rio2016.5ch.net/test/read.cgi/math/1615510393/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
172: 132人目の素数さん [sage] 2023/02/04(土) 09:14:32.79 ID:FXdrMrMW >>171 つづき ここでモジュライ (moduli) という言葉の語源につ いてすこし触れておきます. moduli はラテン語の modulus の複数形で測定の標準単位を意味します. ラテン語の modulus はギリシャ建築の柱の基底部の 半径を基準とした尺度であった, という説もありま す. この語感にふさわしい「モジュライ理論」の代 表格は楕円曲線の理論です. その場合には, 基準の尺 度とも言うべきモジュライ不変量 j があります. 現 代的な理論にはそのような不変量を見つけるのが難 しくなりました. モジュライ空間の別の例をあげます. V を長さ 5 の 横ベクトルのなす 5 次元複素ベクトル空間とします: V = {(x1, x2, x3, x4, x5); xi ∈ C}. この V の中の 2 次元複素部分ベクトル空間 (以後 2 次元部分空間と言う) をすべて集めて Gr(5, 2) = {W ⊂ V ; W は 2 次元部分空間 } と定義します. この空間をグラスマン多様体と呼び ます. これは「モジュライ空間」のひとつの例を与 えます. つまり Gr(5, 2) は V の中の 2 次元部分空間 のなす「モジュライ空間」です. 4 安定性とモジュライ空間 定理 4.4 (Donaldson) コンパクトな複素 2 次元多様 体 X の (下部構造としての可微分実 4 次元多様体) 上の自己双対ヤン ・ ミルズ接続 (で表されるインスタ ントンと呼ばれる場) のモジュライ空間は, X 上の階 数 2 の「GIT-安定な」ベクトル束のモジュライ空間 と一致する. ソリトンが空間方向に粒子性を持った波を表すよ うに、インスタントンとは時間方向に粒子性を持っ た (2,2) 行列で表示された電磁場のようなものです。 Donaldson はさらに強く, X の単なるホモトピー不 変量ではない, 可微分多様体としての不変量 (Donaldson 多項式) を与えています. この Donaldson 理論は, その後 Seiberg-Witten 理論によってさらに深 められ, 可微分実 4 次元多様体について大変深い研究が現在も進んでいます. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1615510393/172
177: 132人目の素数さん [sage] 2023/02/04(土) 09:35:19.92 ID:pd0mp3jW >>171-176 承認欲求の塊、森田検索君 今日もムキになって検索結果の大量コピペ そして「いいね!」と言ってもらえると勝手に夢想 https://www.youtube.com/watch?v=qVdBBOpSoN4 http://rio2016.5ch.net/test/read.cgi/math/1615510393/177
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s