[過去ログ] ガロア第一論文及びその関連の資料スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
218(1): 2023/02/05(日)10:55:14.99 ID:XfMj3WNk(7/19) AAS
>>217
つづき
外部リンク:ja.wikipedia.org
層係数コホモロジー
数学において、層コホモロジー (sheaf cohomology) は、アーベル群の層に関連する層の理論の一面であり、ホモロジー代数を用いて、層 F の大域切断の具体的な計算を可能とする
外部リンク:ja.wikipedia.org
束 (束論)
省3
444: 2023/02/15(水)06:42:06.99 ID:MT2IFioO(2/8) AAS
>>436 御幾つだが知らんがこのままだとあんたもそうなるよ(ボソッ)
>>439 越中おわら節? 民謡好きとは渋い趣味だねぇ
>>441 どっちかっていうと数学枯れすすきだな
♪数学に負けた~
いいえ自分に負けた~
この板も追われた
いっそ綺麗に消えるか
省4
459: 2023/02/15(水)11:10:46.99 ID:ix8IQFwl(3/8) AAS
>>458
つづき
各地の状況(現在は全て廃止)
東京都
1967年から1981年に実施。 東京都では、学校群制度導入の必然(学校群内各校の学力が均等になるように合格者を割り振るため)として、東大合格者数1位を記録していた日比谷をはじめ西、戸山、新宿、小石川、両国、小山台、上野などの名門都立高校の東京大学をはじめとする難関大学への進学実績が低下し、特に日比谷では急速かつ極端に落ち込んだ。一方で、名門都立高校と同じ学校群を構成した青山、富士、国立などの進学実績は急速に上昇した。この制度導入以降、都立高校全体の難関大学進学実績は長期低落に向かった[1]。
・1967年 - 東龍太郎都知事時代、小尾乕雄(おびとらお)教育長の主導によって都立高校入試に学校群制度が採用されることとなった。1966年4月に同制度の構想を公表、7月に導入を正式決定、1967年2月に同制度による第1回入試を実施と、構想の公表から入試実施まで1年足らずであった。詰込教育批判への対応から学力試験の科目数が9科目から3科目へと削減され、9科目の内申と学力試験とを実質的に同等に評価することとなった。同時に、第二志望を認める仕組みをなくし、不合格者は学区内での成績いかんにかかわらず都立高へは進学させないこととなった。学校群制度は美濃部亮吉都知事時代にそのまま引き継がれ、鈴木俊一都知事時代の1981年まで存続した。
(引用終り)
省1
496: 2023/02/16(木)20:32:01.99 ID:EiAEzpFq(1/2) AAS
>>488
>外部リンク:www.ritsumei.ac.jp
>倉辻ひろし(Kuratsuji Hiroshi) 立命館大
下記だね
外部リンク:researchmap.jp
倉辻 比呂志
クラツジ ヒロシ (Hiroshi Kuratsuji)
省3
520: 2023/02/17(金)11:57:47.99 ID:oqk6Ud2w(4/4) AAS
どうせここに書くなら
楔の数学的意味とか書けば?
ま、何にも分かってないから
書けないだろうけど
608: 2023/02/18(土)17:24:55.99 ID:RurR48Ue(18/22) AAS
>>605
では環は何と呼べばよかったかといえば
域(domein)で良かったのではないかと思う
ついでにいえば体もfieldの意味に沿えば「場」である
668: 2023/02/20(月)08:00:01.99 ID:/ZMay2rN(3/4) AAS
>>663
> 微分形式とか外微分とかいう以前
> 読めば必要十分な解説だと分かる
"必要十分な解説"?
遠山啓の「数学入門」>>636
あの~「入門」ですよ?!
必要十分? 「外積代数」(物理のかぎしっぽ)
省8
828(1): 2023/02/26(日)16:49:06.99 ID:ZAlHQVD3(13/24) AAS
>>826
>一般型 の多様体 X は最大の小平次元を持つ(小平次元は多様体の次元に等しい)。
>ある意味では、ほとんどの代数多様体が一般型である。例えば、n-次元射影空間の中の次数 d の滑らかな超曲面が一般型であることと、d > n+1 であることは同値である。従って、射影空間内のほとんどの超曲面は一般型であることが言える。
代数幾何
一般型 の多様体
は、3次元ポアンカレ予想からみの 双曲幾何(Hyperbolization theorem)に相当する部分かな
双曲幾何構造が、最も一般的とか書いてあった記憶がある
省7
904(1): 2023/02/28(火)08:21:09.99 ID:P4XFllxB(3/5) AAS
>>903
つづき
本書は三つの章からなる。第1章では「極小モデルプログラム」(MMP)を定式化するための準備として、「広中の特異点解消定理」、小平の消滅定理の拡張である「川又-フィーベックの消滅定理」、境界付き代数多様体でMMPにおける考察の対象となるログ対であるKLT(川又ログ末端的)、DLT(因子ログ末端的)、LC(ログ標準的)などのクラスが解説されている。第2章ではMMPを定式化するための二つの基礎定理である「固定点自由化定理」と「錐定理」の証明が与えられ、MMPの実行プロセスが解説されている。この章の後半ではMMPの高次元(特に4次元以上)での実行に有効な手段を提供する「スケール付きMMP」(本書では「直線的MMP」)、「端射線の長さの評価」、「因子的ザリスキー分解」、「ショクロフ多面体」、乗数イデアル層を使った「多重対数的標準形式の拡張定理」が述べられている。第3章では上記のBCHMの主定理と有限生成定理の証明が与えられ、最後に「今後の課題」(アバンダンス予想=LC対の対数的標準因子がネフならば半豊富であるという予想、フリップの終結予想、正標数への拡張、など)と「関連する話題」に触れられている。
本書を通読して印象に残った事を以下に述べてみたい。
第1章で解説されている「広中の特異点解消定理」(「強い意味でのログ特異点解消」を保証する)と「川又-フィーベックの消滅定理」が、極小モデル理論において極めて重要な役割を果たしている事が良く分かる。また、境界付き代数多様体において、KLTとLCというクラスの中間に、DLTというクラスを導入した事で、(劣同伴公式を使った)次元に関する帰納的な議論が可能になり、対数的MMP(LMMP)の近年の新展開の大きな成功要因だったのではないかという印象を持った。
つづく
984(1): 2023/03/03(金)21:06:43.99 ID:vmM77e+R(3/7) AAS
>>981 ついでに
1)3次方程式、4次方程式の場合の解説は、ガロアの第一論文にガロアの理論の応用として簡単に記載がある
勿論、第一論文の解説本(彌永、倉田、守屋など)などでは、詳しい解説ある
というか、それって石井本にもあったろうよw
2)”この過程で、群の固有分解(現代用語で正規部分群)の概念に到達する”
の部分は、遺稿のChevallierへの手紙>>110において
”正規部分群について明記している
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s