[過去ログ] ガロア第一論文及びその関連の資料スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
78: 2023/01/29(日)21:43:36.83 ID:OeFtN7RE(1) AAS
曲率とかはいらんかね
316(2): 2023/02/10(金)13:34:57.83 ID:6XP++niM(3/3) AAS
質問
1. 無限小数が実数を表すと言える根拠を示せ
2. 1=0.999…と言える根拠を示せ
336: 2023/02/11(土)17:05:49.83 ID:cDdl8Z4s(13/24) AAS
>>333 追加
物理用Geometry
Sheaf、Algebraic Geometryもあるね
外部リンク[pdf]:research.kek.jp
Geometry LastUpdate: 2006.9.26 小玉 英雄
目 次
1 Differential Geometry 7
省31
621(1): 2023/02/19(日)07:14:17.83 ID:11cGKNYx(1/14) AAS
>>617
> 一見えらく素直に見えるが
僕はもともと素直だが・・・君と違って
> 私の診断は、サイコパスだから
それは君に対する僕の診断
>>統合失調症ではない
>にしては統合失調症の薬に えらく詳しかったね
省32
905: 2023/02/28(火)08:21:27.83 ID:P4XFllxB(4/5) AAS
>>904
つづき
第2章の前半は、MMPの現代的な定式化に関する最大の功労者の一人である著者自身による基礎定理たちの解説であるので、とても面白く精読に値すると思う。良く知られている様に、対数的標準因子が負となる端射線には収縮写像が付随し、それが双有理写像になるのは「因子収縮写像」、「小さな収縮写像」の何れかである。後者の場合、収縮後の対数的標準因子はR-カルティエにならず(対数的標準因子の比較ができず)都合が悪い、そこで考案されたのが「フリップ」という操作である。因子収縮写像でも、フリップでも、対数的標準因子を減少させる操作であるため、双有理同値類から対数的標準因子が極小となる「極小モデル」を抽出するMMPにうまく適合している事が分かる。MMPの成功の基を質すと、フリップという素晴らしいアイディアにある事に思い当たる。これを初めて考案した研究者は誰(森先生?)なのか評者は知らない(歴史に詳しい専門家の方々からご教示頂けると嬉しい)。
第3章は、ショクロフ、シウ(Siu)、ヘーコンとマッカーナン、BCHM、などの素晴らしい着想と成果が協奏する本書のハイライトといえる。ここで活用される重要なテクニックに、「スケール付きMMP」と「PLフリップへの還元」の二つがある。またフリップの存在をPLフリップの存在に還元する「PLフリップの存在定理」の証明には、シウに始まる「乗数イデアルを用いる拡張定理」とショクロフによる「漸近的充満条件」が活用されており素晴らしい。ここでは「PLフリップの存在定理」、「特殊終結定理」、境界が相対的に巨大であるという条件下での「極小モデルの存在定理」と「非消滅定理」(対数的標準因子が擬有効ならば、弱有効(=有効因子と数値的同値)という定理)などが次元による大掛かりな帰納法によって証明されており、その素晴らしさに読者は感銘を覚えられることと思う。
この分野の大家である著者による的を射た言明が本書を更に魅力あるものにしている。
そのような例を以下に二つほど紹介して、このレビューを終わりたい。「このようにしてフリップ定理が一般次元で証明されることになった。3次元フリップ定理の証明が非常に難しかったことを思い出すと感慨の深いものがある。ログを使った問題の定式化の勝利であるともいえる」(本書232頁)。
(引用終り)
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.047s