[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 52 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 52 http://rio2016.5ch.net/test/read.cgi/math/1613784152/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
421: 132人目の素数さん [sage] 2021/03/01(月) 15:15:03.16 ID:v7ayOauM いや、ベルヌーイ数の記述どこよ。 http://rio2016.5ch.net/test/read.cgi/math/1613784152/421
423: Schlecht [sage] 2021/03/01(月) 15:23:38.49 ID:Rz6p2V3E >>421 >ベルヌーイ数の記述どこよ。 The J-homomorphism のとこ ”a cyclic group of order equal to the denominator of B2m/4m, where B2m is a Bernoulli number, if k = 4m - 1 ≡ 3 (mod 4).” J-homomorphism https://en.wikipedia.org/wiki/J-homomorphism http://rio2016.5ch.net/test/read.cgi/math/1613784152/423
496: 132人目の素数さん [] 2021/03/02(火) 07:45:10.58 ID:8q8Y/BcG >>421-423 >ベルヌーイ数の記述どこよ。 ベルヌーイ数 関孝和も研究したのか(下記) 元々は、べき乗和の計算のためだったんだ 古代ギリシャ、Pythagoras、Archimedes も登場するんだね、へー 知らなかったね (参考) https://en.wikipedia.org/wiki/Bernoulli_number Bernoulli number Contents 1 Notation 2 History 2.1 Early history 2.2 Reconstruction of "Summae Potestatum" Early history The Bernoulli numbers are rooted in the early history of the computation of sums of integer powers, which have been of interest to mathematicians since antiquity. Among the great mathematicians of antiquity to consider this problem were Pythagoras (c. 572–497 BCE, Greece), Archimedes (287–212 BCE, Italy), Aryabhata (b. 476, India), https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png/330px-Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png A page from Seki Takakazu's Katsuyō Sanpō (1712), tabulating binomial coefficients and Bernoulli numbers http://rio2016.5ch.net/test/read.cgi/math/1613784152/496
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s