[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 52 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 52 http://rio2016.5ch.net/test/read.cgi/math/1613784152/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
301: 132人目の素数さん [] 2021/02/27(土) 12:38:32.69 ID:f+hU2HEr >>277 南出論文 楕円曲線 “y2 = x(x-1)(x-λ)” the Legendre form “λ-line” ここらが重要キーワードですね http://www.kurims.kyoto-u.ac.jp/~motizuki/Explicit%20estimates%20in%20IUTeich.pdf Explicit Estimates in Inter-universal Teichmuller Theory. PDF NEW!! (2020-11-30) いわゆる南出論文 P2 Introduction Theorem. 7We shall regard X as the “λ-line” - i.e., we shall regard the standard coordinate on X as the “λ” in the Legendre form “y2 = x(x-1)(x-λ)” of the Weierstrass equation defining an elliptic curve - P34 Corollary 5.2. (Construction of suitable µ6-initial Θ-data) Write X for the projective line over Q; D ⊆ X for the divisor consisting of the three points “0”, “1”, and “∞”; (Mell)Q for the moduli stack of elliptic curves over Q. We shall regard X as the “λ-line” - i.e., we shall regard the standard coordinate on X as the “λ” in the Legendre form “y2 =x(x - 1)(x - λ)” of the Weierstrass equation defining an elliptic curve - http://rio2016.5ch.net/test/read.cgi/math/1613784152/301
302: 132人目の素数さん [] 2021/02/27(土) 12:51:48.66 ID:f+hU2HEr >>301 >the Legendre form >ここらが重要キーワードですね 参考 https://en.wikipedia.org/wiki/Legendre_form Legendre form Contents 1 Definition 2 Numerical evaluation 3 References The respective complete elliptic integrals are obtained by setting the amplitude, Φ, the upper limit of the integrals, to π/2. The Legendre form of an elliptic curve is given by y2 = x(x-1)(x-λ) Numerical evaluation The classic method of evaluation is by means of Landen's transformations. Descending Landen transformation decreases the modulus k k towards zero, while increasing the amplitude Φ. Conversely, ascending transformation increases the modulus towards unity, while decreasing the amplitude. In either limit of k, zero or one, the integral is readily evaluated. Most modern authors recommend evaluation in terms of the Carlson symmetric forms, for which there exist efficient, robust and relatively simple algorithms. This approach has been adopted by Boost C++ Libraries, GNU Scientific Library and Numerical Recipes.[3] http://rio2016.5ch.net/test/read.cgi/math/1613784152/302
303: 132人目の素数さん [sage] 2021/02/27(土) 13:31:25.71 ID:+FXN4YNO >>301-302 阿多岡 貴様には無理 諦めろ http://rio2016.5ch.net/test/read.cgi/math/1613784152/303
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.044s