[過去ログ]
純粋・応用数学(含むガロア理論)5 (1002レス)
純粋・応用数学(含むガロア理論)5 http://rio2016.5ch.net/test/read.cgi/math/1602034234/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
1: 132人目の素数さん [] 2020/10/07(水) 10:30:34 ID:DEed+xyB テンプレ後で http://rio2016.5ch.net/test/read.cgi/math/1602034234/1
922: 132人目の素数さん [sage] 2020/12/12(土) 11:24:33 ID:JNdvx9sF バカのくせにガロアの原論文なんて読むから おかしな勘違いするんだよww http://rio2016.5ch.net/test/read.cgi/math/1602034234/922
923: 132人目の素数さん [sage] 2020/12/12(土) 11:31:28 ID:l8Uc2rWI 雑談君へ あなたが持ってる足立先生の本、買ってあげます あなたが持っててもどうせ理解できず無駄だから http://rio2016.5ch.net/test/read.cgi/math/1602034234/923
924: 132人目の素数さん [sage] 2020/12/12(土) 11:39:32 ID:JNdvx9sF >自分の著書(類体論へ至る道)を世界的名著と云ってた その話は面白いと思う。 でも、世界的名著はいくら何でも...だろう。 志村氏のことを批判してたことで有名だけど 自分も相当な自信家なんだね。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/924
925: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 11:52:33 ID:CvV0i5UV 年末忙しいので、早めに次スレ立てた よろしく 純粋・応用数学(含むガロア理論)6 https://rio2016.5ch.net/test/read.cgi/math/1607741407/ http://rio2016.5ch.net/test/read.cgi/math/1602034234/925
926: 132人目の素数さん [sage] 2020/12/12(土) 12:19:27 ID:l8Uc2rWI >>925 性懲りもない🐎🦌だな 貴様にガロア理論なんか無理だから スレッドのタイトルに書くな 証明が理解できない人っていうのは多いが 定義や定理の文章を読み間違え続ける人は珍しい なんらかの「精神的欠陥」があるとしか思えんね http://rio2016.5ch.net/test/read.cgi/math/1602034234/926
927: 132人目の素数さん [sage] 2020/12/12(土) 12:25:57 ID:l8Uc2rWI >>924 この件は別に他人をDiSってるわけじゃないからカワイイもんです 私が耳にしたもっとスゴイ話 「T先生が開発したCAIシステムに、 ちゃっかり自分の名前の頭文字をいれて ”THEシステム”と命名したH先生」 ま、実際は結構貢献してると思うんですけど ちなみに、もう故人です https://www.jstage.jst.go.jp/article/jssep/5/0/5__1_/_pdf http://rio2016.5ch.net/test/read.cgi/math/1602034234/927
928: 132人目の素数さん [sage] 2020/12/12(土) 12:40:06 ID:GC8QEm57 ふと疑問に思ったが、瀬田君が実は年齢的に約20歳だったということはあり得る話なのか? このスレが9年近く続いていることを考えると、 これまでの様々な瀬田君にまつわる現象を説明するには、 今までの大部分のスレは10代のお子チャマの瀬田君が書いていて、 瀬田君が実は年齢的に約20歳だったという仮説を立てれば、 すべてではないが瀬田君にまつわる出来事を説明出来なくはない。 よく悪戯をして遊ぶお子チャマもいるしな。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/928
929: 132人目の素数さん [sage] 2020/12/12(土) 12:43:14 ID:l8Uc2rWI 雑談君の数学レベルはたかだか18歳です 彼の数学の時計は大学1年の4月で止まってます 未だに実数と線形空間関係の概念が理解できないままですから http://rio2016.5ch.net/test/read.cgi/math/1602034234/929
930: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 12:47:13 ID:CvV0i5UV >>920 >>足立恒雄先生の本では >なんだ、タネ本はそれか ありがと おれには、大概書くことにはタネ本があるよ 当たり前だよ、おれ数学研究者じゃないしw(^^ >自分の著書(類体論へ至る道)を世界的名著と云ってた(それしか覚えてない) なんか、聞いた名前だと思って、書棚を探すとあったな 奥付見ると、1979年初版本ってある 数学セミナーの連載を纏めたとある(^^; なんか、読んだみたいだ。線を引いてあるページがあるな 第10章 ガロアの理論 を主に、つまみ食いしたみたいだね 殆ど記憶に残ってないが まあ、肥しにはやったんだろうね(^^ いま見ると、第8章 に「森さんのことなど」の節があって、 倉田令二朗 (いま見ると、令和の”令”なんだ(^^) 草場公邦、森先生が出てくる 森さんって、森毅さんだった。重文先生だと思って、ページをめくったけど、外れた 「碁2時間」が面白い 最終章 12章の 類体論概説が、売りなんだろうね(^^ §5 類体論とは? の説のページに、マーカーで線を引いてあるが、 さっぱり記憶に残っていない 理解できなかったみたい。おれは、自慢じゃないが、イデアルがあんまり分かってないんだよね (ガロア理論に出てこない。でも少しだけ勉強したよ。いまなら、ちょっと読めるかもな) §7 終わりにで 書く予定で書かなかったものは 1.イデアルの概念のフェルマー予想への応用 とあるけどね 多分、クンマー理論だろう・・、ああそう書いてあるね もう、内容的には古いが (フェルマー予想は解決されたし)、 ざっと二三日で読むにはいいかも http://rio2016.5ch.net/test/read.cgi/math/1602034234/930
931: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 12:48:36 ID:CvV0i5UV >>928 ありがとう ご想像にお任せします なお、名前の議論には参加しません だれか、第三者に迷惑が掛かるかもしれないのでね(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/931
932: 132人目の素数さん [sage] 2020/12/12(土) 12:55:34 ID:JNdvx9sF >>928 思ったんだけど、やっぱり数学って20代の頃までに ある程度頭に入ってないとダメなんじゃないかな。 セタの場合、これだけやってダメなのは もう「限界年齢」をとっくに超えてるからww 頑固さや頭の固さも感じるし、まったく年相応なんじゃ http://rio2016.5ch.net/test/read.cgi/math/1602034234/932
933: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 13:16:49 ID:CvV0i5UV >>918 >足立恒雄先生の本を見るのも久し振りでね あと、関連を書いておくと お薦めは下記 1.足立恒雄先生の本は,薄い本だけど、定理の証明が、結構練習問題になっている Coxのガロワ理論 上下 は、ボリュームがあるけど、足立本で練習問題の部分が、ちゃんと証明、説明があるね(いま気付いたけど(^^) Coxのガロワ理論が良いのは「数学ノート」と「歴史ノート」が、各章についていて、これが結構良い。一読の価値あり 2.関連して、Coxの「数学ノート」と「歴史ノート」の部分をやさしく解説しているのが、矢ヶ部巌「数III方式 ガロアの理論」です これは、一読の価値あり! ガロア理論を学ぶころの数学科生なら数日で読めるだろうし、チラミしておけば、きっと役に立つだろうね 3.彌永本の「ガロアの時代 ガロアの理論」第二部 数学編のガロアの第一論文は、絶対に読んでおくのが良いと思う 倉田令二朗先生の本で、盛んに引用されていた 下記 Edwards Galois Theory の序文に ”I saw that modern treatments of Galois theory lacked much of the simplicity and clearity of the original.” と第一論文を大絶賛している。自分も、最初はワケワカだったが、分かると、なるほどだったな(^^ (参考) https://www.springer.com/jp/book/9780387909806?gclid=Cj0KCQiAzsz-BRCCARIsANotFgOBkLKh_mTGwxybUMqe2ZQj10KOwlGaFRGpzSxqoEhK7WI2Ws13H9saAgXDEALw_wcB 1984 Galois Theory Authors: Edwards, Harold M. http://rio2016.5ch.net/test/read.cgi/math/1602034234/933
934: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 13:20:46 ID:CvV0i5UV >>932 >思ったんだけど、やっぱり数学って20代の頃までに >ある程度頭に入ってないとダメなんじゃないかな。 そりゃ、数学科出て大学残って研究者ってならそうだろうが 俺たち工科は、数学科をこき使う側だからなw 細かい話は、数学屋がやれば言い おれたち「やれ!」っていう側だよ(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/934
935: 132人目の素数さん [] 2020/12/12(土) 13:35:10 ID:sWyqoFjR じゃあ工科板へ行って下さい ここは数学板です http://rio2016.5ch.net/test/read.cgi/math/1602034234/935
936: 132人目の素数さん [] 2020/12/12(土) 13:35:11 ID:sWyqoFjR じゃあ工科板へ行って下さい ここは数学板です http://rio2016.5ch.net/test/read.cgi/math/1602034234/936
937: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 13:37:04 ID:CvV0i5UV 望月のIUT論文の検証の問題 1.絶対厳密にと言って、正しい確率 0.999・・・=1 を目指す。これ数学者。でも、いつまでも終わらない 2.ある程度現実的なところで、見切って、例えば3人査読してOKなら、出版するっぺよ。これが、工学的考え そういう現実的な考えができない人 現実の社会では、あんまり使えない でも、そういう人をうまく使うのも、仕事のうち(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/937
938: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 13:38:21 ID:CvV0i5UV >>935-936 笑える おまえ、どこに居て、書いているんだ? ここは、おれのスレだよ おまえが、ここから去れよw(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/938
939: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 13:49:20 ID:CvV0i5UV >>905 >龍孫江氏のYoutube動画 https://www.youtube.com/watch?v=scJhIv1P32Q >解説テキスト版:https://note.mu/ron1827/n/n6f79eb36c397 >”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包むことを示せ.” >>906 > "昔々、多分1960年ころの東大の院試問題で > 「群が指数有限の部分群を含めば、指数有限の正規部分群を含む」 > ってのが出た" みんな後出し上手いね まさか、数学科生はいないよね?(^^; Gを単純群にとれば、即反例ができる 指数有限の部分群があっても、真の正規部分群(非自明な正規部分群)を含むことはできない! そんなの、瞬間に分かる話だろ、工学科ならさ http://rio2016.5ch.net/test/read.cgi/math/1602034234/939
940: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 13:52:24 ID:CvV0i5UV >>939 >Gを単純群にとれば、即反例ができる >指数有限の部分群があっても、真の正規部分群(非自明な正規部分群)を含むことはできない! >そんなの、瞬間に分かる話だろ、工学科ならさ 工学科は、こういう常識が必要なんだ 細かいロジックじゃない 「そんなん、おかしいだろ? 常識外れだよ」って言えないといけないんだ http://rio2016.5ch.net/test/read.cgi/math/1602034234/940
941: 132人目の素数さん [sage] 2020/12/12(土) 14:50:15 ID:JNdvx9sF >>939 これ。意固地でお爺ちゃんの反応。 何が後出しなの? 自分が正しくて本当に龍孫江が間違ってると思ってるのか? 龍孫江の議論というか、群論じゃ常識的な議論だよ。 間違ってたら視聴者なりが指摘するだろ、アホ。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/941
942: 132人目の素数さん [] 2020/12/12(土) 15:01:32 ID:l8Uc2rWI >>939-940 >真の正規部分群(非自明な正規部分群)を含むことはできない! >そんなの、瞬間に分かる話だろ、工学科ならさ >工学科は、こういう常識が必要なんだ >細かいロジックじゃない >「そんなん、おかしいだろ? 常識外れだよ」 >って言えないといけないんだ ガロア理論の「常識」を踏み外したのは、 雑談君、あんただけどな Gal(L/K)の部分群Hに対して、 Hで不変となるLの部分体Mを作れば LはMのガロア拡大になって Hはそのガロア群Gal(L/M)となる そこが「すべての始まり」なんだ で、正規部分群Nなら、実は MもKのガロア拡大になっていて 商群G/Nがそのガロア群になっている ガロア群Gに対して 「正規部分群の商群をとっていく操作で単位群に至る」というのは 「元の群が単位群から拡大を繰り返してできたもの」ということ その程度の「ロジック」は数学科なら常識 それすら分かってないのは 論理もわからん🐎🦌の雑談君 だから数学板の連中は雑談君の発言に必ずこういう 「そんなん、おかしいだろ? 常識外れだよ」 お・ぼ・え・と・け http://rio2016.5ch.net/test/read.cgi/math/1602034234/942
943: 132人目の素数さん [sage] 2020/12/12(土) 15:08:24 ID:JNdvx9sF >>940 有限単純群の場合に龍孫江の議論(というか群論で まったく一般的な議論)を適用するとどうなるか? 有限単純群Gが指数nの部分群H, [G:H]=n>1を持つとする。 商集合G/HにGを作用させると、置換として作用するから これはGからS_nへの準同型写像φを誘導する。 kerφはGの正規部分群だが、これは{e}しかありえないので φは単射である、したがって上記のような任意の指数nに対して GはS_nへの埋め込みを持つという著しいことが言える。 反例なら、↑に関して言えば? http://rio2016.5ch.net/test/read.cgi/math/1602034234/943
944: 132人目の素数さん [] 2020/12/12(土) 17:29:18 ID:sWyqoFjR 有限単純群という言葉を言ってみたかったに1000ペソ http://rio2016.5ch.net/test/read.cgi/math/1602034234/944
945: 132人目の素数さん [sage] 2020/12/12(土) 17:38:56 ID:l8Uc2rWI 今の雑談ちゃんの気分 :.,' . : : ; .::i'メ、,_ i.::l ';:.: l '、:.:::! l::! : :'、:i'、: : !, : : : : : :l:.'、: : '! ,' . : i .;'l;' _,,ニ';、,iソ '; :l ,';.::! i:.! : '、!:';:. :!:. : : : :.; i : :'、: i:.i、: :。:!.i.:',r'゙,rf"`'iミ,`'' ゙ ';.i `N,_i;i___,,_,'、-';‐l'i'':':':':‐!: i : : '、 i:.!:'、: :.:!l :'゙ i゙:;i{igil};:;l' ヾ! 'i : l',r',テr'‐ミ;‐ミ';i:'i::. : i i i : : :i :!!゚:i.'、o:'、 ゙、::゙''".::ノ i゙:;:li,__,ノ;:'.、'、 :'i:::. i. !! : : !: .' :,'. :゙>;::'、⊂‐ニ;;'´ '、';{|llll!: :;ノ ! : !::i. : : : : i : : :,' /. :iヾ、 ` 、._. ミ;;--‐'´. /.:i;!o: : : :i : : ; : ,' : : i.: <_ ` ' ' ``'‐⊃./. :,: : : O: i. : : i ,'. . : :', 、,,_ ,.:': ,r'. : , : : !: : あやまれ!! :,'/. : : . :;::'、 ゙|llllllllllllF':-.、 ,r';、r': . : :,i. : ;i : : A5にあやまれ!! i,': : : :.::;.'.:::;`、 |llllH". : : : :`、 ,rシイ...: : ; : :/:i : i:!::i: ;'. : :..:::;':::::;':::::`.、 |ソ/. : : : : : : ;,! ,/'゙. /.:::: :,:': :./',:!: j:;:i;!; i. : .:::;:'i::::;':::::::::i::`:.、;゙、';‐ 、,;__;,/ノ . :,/.:::: :/. : :/.:::i. j:;;;;;;;; l .:::;:'::;':::;':::::::::::i::::i::`:,`'-二'‐-‐''゙_,、-.':゙/.:::: ;ィ': : :/.:::::i: j、;;;;;;; .:::;:':::;':::;'::::::::::::::i:::i:::::..`'‐、、、-<゙.::::::::/.::: ://. : /.:::::::i :j::.'、:;;; http://rio2016.5ch.net/test/read.cgi/math/1602034234/945
946: 132人目の素数さん [sage] 2020/12/12(土) 17:44:02 ID:l8Uc2rWI もし、雑談ちゃんが、18歳の美少女(ちなみに 賀喜遥香 似)だったら 「わかった オレが悪かった」と謝る ・・・そして一晩中●し合う 参考映像 https://www.bilibili.com/video/av712002631/ http://rio2016.5ch.net/test/read.cgi/math/1602034234/946
947: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 17:47:50 ID:CvV0i5UV >>941>>943 あらら >>905 >龍孫江氏のYoutube動画 https://www.youtube.com/watch?v=scJhIv1P32Q >解説テキスト版:https://note.mu/ron1827/n/n6f79eb36c397 >”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包むことを示せ.” 場合分けするよ 1.A)Gが単純群か、あるいは B)Gが単純群ではないか? 2.A)Gが単純群なら、真の正規部分群(非自明な正規部分群)を含むことはできない(>>939) 3.B)Gが単純群ではないなら、真の正規部分群Nが少なくとも1つ存在する いま、簡単のために、有限群に限るとする で、龍孫江氏”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包む”ならば Gの任意の部分群Hに対して、H⊃Nとなるが、それはありえない Nの部分群 N⊃H’が存在したら、そのH’もGの指数有限の部分群で ”H’は指数有限の正規部分群を包む”となるが それは、ありえない! 実際反例として、対称群Sn(n≧5)がとれる。Sn⊃Anだ。Anにも部分群H’が存在し、Sn⊃H’だ だが、H’正規部分群でもなく、正規部分群を含むこともできない (証明は、思い付くであろう by ガロア(^^ ) QED 以上 http://rio2016.5ch.net/test/read.cgi/math/1602034234/947
948: 132人目の素数さん [sage] 2020/12/12(土) 17:55:10 ID:l8Uc2rWI SU-METALが数学少女だったらいいそうなセリフ すぅ「ベキ根で解けないならテータ関数を使えばいいのに」 ひめ「おまえはマリー・アントワネットか!」 http://rio2016.5ch.net/test/read.cgi/math/1602034234/948
949: 132人目の素数さん [sage] 2020/12/12(土) 19:01:19 ID:JNdvx9sF >>947 バ〜カw http://rio2016.5ch.net/test/read.cgi/math/1602034234/949
950: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 21:18:22 ID:CvV0i5UV >>947 >”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包むことを示せ.” ・Gが有限群とする。当然部分群Hも有限で、よって、指数は常に有限だ ・Gが単純群で有限とする。この場合、真部分群の正規部分群は{e}のみ。だから、この場合は、任意の有限群Hは常に{e}を含むと言いたいのか? ・それを、龍孫江氏のYoutube動画(>>947) が説明している? http://rio2016.5ch.net/test/read.cgi/math/1602034234/950
951: 132人目の素数さん [sage] 2020/12/12(土) 22:35:56 ID:JNdvx9sF Gが無限群の場合、龍孫江動画の証明は >”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包むことを示せ.” は、自明ではない結論をもたらす。たとえばG=モジュラー群としてみよ。 Gが有限群の場合、kerφ={e}になる場合は上の命題は自明だが このときは、S_nの可移部分群として埋め込まれるという やはり自明ではない結論をもたらす。 分かったら、すっとぼけて話をそらさずに>>942の話に戻れ。 お前が自分の誤りを認めない限り、永久に指摘され続けるからな。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/951
952: 132人目の素数さん [sage] 2020/12/12(土) 22:39:36 ID:JNdvx9sF ガロア理論をスレ名に掲げて数十個クソスレ立てながら よりによってガロア対応を誤解していたバカ野郎w http://rio2016.5ch.net/test/read.cgi/math/1602034234/952
953: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 23:54:55 ID:CvV0i5UV >>951 >Gが無限群の場合、龍孫江動画の証明は >>”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包むことを示せ.” >は、自明ではない結論をもたらす。たとえばG=モジュラー群としてみよ。 話がすり替わっているぞ もともと、コンテキスト(文脈)は>>692の ">いいですか? まず、有限群Gをある対称群S_nの部分群として埋め込む。 良くないんじゃない? ”埋め込む”の定義は?" ここは、有限群の話だよ? なんで言い訳に、無限群の場合が出てくるんだ? それと、Gとして下記の無限交代群 A_∞の場合において、「Hは指数有限の正規部分群」って、どうなるんだ? 一例で良いから、A_∞の指数有限の正規部分群を示せ!(^^ https://ja.wikipedia.org/wiki/%E5%8D%98%E7%B4%94%E7%BE%A4 単純群 1.2 無限単純群 無限単純群 無限交代群 A_∞、つまり整数全体の偶置換の群は単純群である。この群は有限群A_nの(標準埋め込み A_n → A_n+1に関する)単調増加列の合併として定義できる。 (引用終り) >Gが有限群の場合、kerφ={e}になる場合は上の命題は自明だが そう、自明だよ 正規部分群として、自明な正規部分群{e}を認めればな Hが、単位限以外の e≠x なる元xを含めば、定義より逆元x^-1が存在して x・x^-1=e これより、e∈H だから{e}⊂H Hが単位元eのみなら、{e}=H 成立 証明は、3行で終わるぜ http://rio2016.5ch.net/test/read.cgi/math/1602034234/953
954: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/12(土) 23:59:53 ID:CvV0i5UV >>953 追加 無限交代群 A_∞では、指数有限のHが存在しないかな?(^^ 無限単純群って、全部そうなの? 例えば下記はどうよ? 証明ある?(^^; https://ja.wikipedia.org/wiki/%E5%8D%98%E7%B4%94%E7%BE%A4 単純群 1.2 無限単純群 無限単純群 有限生成である 無限単純群を構成するのはもっと難しい。最初の例はグラハム・ヒグマン(英語版)によるもので、ヒグマン群(英語版)の商群である。[6] 他の例は無限トンプソン群(英語版) T と V を含む。有限表示のねじれのない無限単純群はBurgerとMozesにより構成された。[7] http://rio2016.5ch.net/test/read.cgi/math/1602034234/954
955: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 00:02:01 ID:HcEKuJwa >>953 タイポ訂正 Hが、単位限以外の e≠x なる元xを含めば、定義より逆元x^-1が存在して ↓ Hが、単位元以外の e≠x なる元xを含めば、定義より逆元x^-1が存在して http://rio2016.5ch.net/test/read.cgi/math/1602034234/955
956: 132人目の素数さん [sage] 2020/12/13(日) 00:27:41 ID:Eof1sjXR >>953-954 >Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包む には、無限群、有限群含めて反例はないんだな。 じゃ、あなたの負けだな。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/956
957: 132人目の素数さん [sage] 2020/12/13(日) 00:34:32 ID:Eof1sjXR 無限群の話が出てきたもともとの発端は>>693氏の言。 それで、ケーリーの定理が >似たような発想で解ける というのは正にその通りだったわけでしょ。 セタの頭が悪くて理解できないだけ。 埋め込むの定義→>>701 何度言っても頭に入らない? 認知症ですか? http://rio2016.5ch.net/test/read.cgi/math/1602034234/957
958: 132人目の素数さん [sage] 2020/12/13(日) 00:45:01 ID:Eof1sjXR 龍孫江氏の動画を探してきたのはわたし。 氏にはとばっちりになってしまったが笑 思わずセタの本音があらわれてしまった。 時枝氏のときといい、龍孫江氏のときといい セタは「オレの方が正しい」と思ってる。 教えを請うたこともない数学教授のことを 「○○先生」とか気持ち悪い呼び方していながら 数学科生や、もとから数学科じゃなかった時枝氏 ユーチューバーの龍孫江氏に対しては 「オレの方が上」と心の底で思ってる。 バカのくせにww http://rio2016.5ch.net/test/read.cgi/math/1602034234/958
959: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 01:03:00 ID:HcEKuJwa >>956-958 >には、無限群、有限群含めて反例はないんだな。 >じゃ、あなたの負けだな。 そんなことはない 反例は見つかってないだけで、反例がないとはいえない そもそも、”G=モジュラー群”>>951で成立の証明にはならんぞ 例示で、反例は示せても、証明の代用にはならない >龍孫江氏の動画を探してきたのはわたし。 龍孫江氏の動画は、証明になってないでしょw(^^; http://rio2016.5ch.net/test/read.cgi/math/1602034234/959
960: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 01:04:50 ID:HcEKuJwa >>957 (引用開始) 無限群の話が出てきたもともとの発端は>>693氏の言。 それで、ケーリーの定理が >似たような発想で解ける というのは正にその通りだったわけでしょ。 (引用終り) 全然違うと思うし 龍孫江氏の動画は、認めてないぜw http://rio2016.5ch.net/test/read.cgi/math/1602034234/960
961: 132人目の素数さん [sage] 2020/12/13(日) 06:11:31 ID:hbHQHgSE >>693の 「群が指数有限の部分群を含めば、指数有限の正規部分群を含む」 は有用なんだろうが、ここでは直接この定理を使うわけではないから 数学を理解してない素人をミスリーディングする 実際、雑談氏は「正規部分群」に無意味な反応してしまったし おそらく >多分1960年ころの東大の院試問題で…出たが を書きたかっただけだと思うが、意味なかった 証明を一切示してないから、 >似たような発想で解ける も素人には説得力がなかった http://rio2016.5ch.net/test/read.cgi/math/1602034234/961
962: 132人目の素数さん [sage] 2020/12/13(日) 06:20:39 ID:hbHQHgSE >>953 >話がすり替わっているぞ 話をすり替えて、自分の誤りをなかったことにしたがってるのは、君 >もともとは>>692の >"いいですか? まず、有限群Gをある対称群S_nの部分群として埋め込む。" >良くないんじゃない? ”埋め込む”の定義は?" そうだよ、だから>>693の 「群が指数有限の部分群を含めば、指数有限の正規部分群を含む」 は関係ないよ そして、有限群Gがある対称群S_nの部分群となることは >>707で示されてる >>692が本題なら、>>693は切り捨てて、>>707に反論してみろ 以下は無意味 話をすりかえるなよ >ここは、有限群の話だよ? なんで言い訳に、無限群の場合が出てくるんだ? >それと、Gとして下記の無限交代群 A_∞の場合において、 >「Hは指数有限の正規部分群」って、どうなるんだ? >一例で良いから、A_∞の指数有限の正規部分群を示せ! http://rio2016.5ch.net/test/read.cgi/math/1602034234/962
963: 132人目の素数さん [sage] 2020/12/13(日) 06:33:53 ID:hbHQHgSE 部分群の指数 https://ja.wikipedia.org/wiki/%E9%83%A8%E5%88%86%E7%BE%A4%E3%81%AE%E6%8C%87%E6%95%B0 指数の定義 「数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。 同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。」 693の定理の話 「無限群 G は有限指数の部分群 H をもつかもしれない。 そのような部分群はつねにまた有限指数の(G の)正規部分群 N を含む。 実は、H が指数 n をもてば、N の指数は n! のある因子としてとることができる。 実際、N はG から H の左(または右)剰余類の置換群への自然な準同型の核にとることができる。」 上記4行目の「左(または右)剰余類の置換群への自然な準同型」が 「似たような発想」の正体 >>707の「組み換え」と同じ これで話がつながった もう逃げられないぞ 雑談君 http://rio2016.5ch.net/test/read.cgi/math/1602034234/963
964: 132人目の素数さん [] 2020/12/13(日) 08:33:18 ID:lKYEUf04 >>958 相手の発言内容は度外視で、権威者には媚び諂い、そうでない者には尊大・横柄な態度を取る これが瀬田の本性ですね http://rio2016.5ch.net/test/read.cgi/math/1602034234/964
965: 132人目の素数さん [] 2020/12/13(日) 08:34:32 ID:lKYEUf04 >>959 >反例は見つかってないだけで、反例がないとはいえない じゃあるとも言えないじゃんw バカw http://rio2016.5ch.net/test/read.cgi/math/1602034234/965
966: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 08:35:23 ID:HcEKuJwa >>953 補足 (引用開始) https://ja.wikipedia.org/wiki/%E5%8D%98%E7%B4%94%E7%BE%A4 単純群 1.2 無限単純群 無限単純群 無限交代群 A_∞、つまり整数全体の偶置換の群は単純群である。この群は有限群A_nの(標準埋め込み A_n → A_n+1に関する)単調増加列の合併として定義できる。 (引用終り) ふと思ったが これで、同様に無限対称群 S_∞を考えたらどう? 上記のA_∞と同じ で、S_∞ ⊃ A_∞ となって、有限群で SnとAnのアナロジーができる A_∞は、S_∞の正規部分群で、その指数は2とできるだろう(証明は、多分可能じゃね?(^^;) それで >>905 >龍孫江氏のYoutube動画 >解説テキスト版:https://note.mu/ron1827/n/n6f79eb36c397 >”Gが群、HがGの指数有限の部分群ならば、Hは指数有限の正規部分群を包むことを示せ.” >>906 > "昔々、多分1960年ころの東大の院試問題で > 「群が指数有限の部分群を含めば、指数有限の正規部分群を含む」 > ってのが出た" ここで、G=S_∞、H=A_∞としたらどうなるのかね? 有限群では、 SnとAn(n≧5)なら、Snに対してAnは唯一の非自明な正規部分群だろ? でも、この場合は{e}を使えば、Anに「指数有限の正規部分群を含む」は言える しかし、G=S_∞では、{e}では指数有限にならないが G=S_∞で、A_∞⊃Nと出来て、NはS_∞に対して「指数有限の正規部分群」となるようなN(当然無限群でなければならない)が存在れば良いけど その龍孫江氏の証明使って良いからさwww 上記A_∞⊃Nなる「指数有限の正規部分群N」の存在を示せ!w(^^; どぞ(^^; 示せないなら、G=S_∞で反例成立じゃね? http://rio2016.5ch.net/test/read.cgi/math/1602034234/966
967: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 08:37:52 ID:HcEKuJwa >>966 タイポ訂正 G=S_∞で、A_∞⊃Nと出来て、NはS_∞に対して「指数有限の正規部分群」となるようなN(当然無限群でなければならない)が存在れば良いけど ↓ G=S_∞で、A_∞⊃Nと出来て、NはS_∞に対して「指数有限の正規部分群」となるようなN(当然無限群でなければならない)が存在すれば良いけど 分かると思うが(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/967
968: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 08:44:50 ID:HcEKuJwa >>966 補足 ああ、そうか G=S_∞、H=A_∞では、H自身が該当する? でも、龍孫江氏のYoutube動画の証明では、H=A_∞⊃Nなる「指数有限の正規部分群N」があるような説明になっているよね そこ、どうなの?www(^^; http://rio2016.5ch.net/test/read.cgi/math/1602034234/968
969: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 08:50:33 ID:HcEKuJwa >>968 >でも、龍孫江氏のYoutube動画の証明では、H=A_∞⊃Nなる「指数有限の正規部分群N」があるような説明になっているよね >そこ、どうなの?www(^^; 龍孫江氏のYoutube動画の証明では、Hは正規部分群でないとして、スタートして、Hに正規部分群が含まれるという証明でしょ? Hは正規部分群が前提だったら、龍孫江氏のYoutube動画の証明とは合わないよね(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/969
970: 132人目の素数さん [sage] 2020/12/13(日) 08:54:49 ID:hbHQHgSE >>966-969 人の話を聞かずに自分のいいたいことだけいうとか 今回の根本的誤りがよっぽど屈辱だったのかな? http://rio2016.5ch.net/test/read.cgi/math/1602034234/970
971: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 08:56:45 ID:HcEKuJwa >>969 もっと端的に言えば、 龍孫江氏のYoutube動画の証明では、Hは正規部分群でないのに、Hに正規部分群Nが含まれるという証明でしょ? それだけでしょ? 仮に、百歩譲ってその証明が正しいとして、含まれる正規部分群Nが、「指数有限」であるの部分が言えていないと思うけど どう?(^^ http://rio2016.5ch.net/test/read.cgi/math/1602034234/971
972: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 09:01:58 ID:HcEKuJwa >>970 屈辱? 別に(^^ 無限群の場合って、殆ど考えたことがなかったからね 皆も同じじゃね? たいてい、すぐNとかZとかQとかRとかCとかになって、体だ環だに入る その範囲の具体的な無限群で間に合う G=S_∞、H=A_∞ とか、どうなるの? どぞ(^^; http://rio2016.5ch.net/test/read.cgi/math/1602034234/972
973: 132人目の素数さん [sage] 2020/12/13(日) 09:07:34 ID:hbHQHgSE >>972 >無限群の場合って、 あ、話そらした 「任意の有限群は、対称群の部分群となる」 に無限群でてこないよ 別の話に逃げるのは、ガロア理論の基本定理を 根本的に誤解してたのが屈辱だからでしょ? 素直になろうよ 雑談く〜ん http://rio2016.5ch.net/test/read.cgi/math/1602034234/973
974: 132人目の素数さん [sage] 2020/12/13(日) 09:19:07 ID:hbHQHgSE 完全な脱線 >(無限群の例って)すぐNとかZとかQとかRとかCとかになって それしか知らんのか? >G=S_∞、H=A_∞ とか、どうなるの? 非可換な部分群でそれしか思いつかんのか? 雑談君には思いつけなかったが、別に難しくない例 1)2×2実正則行列の群 GL(2,R) 2)2×2で行列式1の実正則行列の群 SL(2、R) 3)2×2で行列式1で要素がすべて整数の正則行列の群(モジュラー群) SL(2,Z) 4)階数2の自由群 F2 さて問題 SL(2,R)がF2を部分群として持つことを示せ http://rio2016.5ch.net/test/read.cgi/math/1602034234/974
975: 132人目の素数さん [sage] 2020/12/13(日) 09:23:58 ID:hbHQHgSE >>974 あ、いかんいかん、Nは単位的半群(モノイド)だ http://rio2016.5ch.net/test/read.cgi/math/1602034234/975
976: ID:1lEWVa2s [sage] 2020/12/13(日) 11:02:31 ID:mdqno+pt 離散数学始めました。 本は買ってませんが独学で解いていこうと思います。 解いていこうはおかしいかもしれませんが。 解として与えられるものって意味になるので。 ある等差数列の和で表せれる体がある時 ある環境条件下で次が存在して次の場への展開があるとき。 その体はどう離散していくか。でしょうね。 何所に数が分散されるか。で。 例えばヤング係数をもった体に自重モーメントがかかったり外的に掛かる時 その体である構造物はどうなるか。 でしょうね。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/976
977: ID:1lEWVa2s [sage] 2020/12/13(日) 11:03:48 ID:mdqno+pt >>976 この体を積体と呼び。 力によって形がある一定以上存在できない宇宙を説明します。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/977
978: ID:1lEWVa2s [sage] 2020/12/13(日) 11:15:31 ID:mdqno+pt 玉置さんが言うに数学は数学者にまかせればいいと。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/978
979: ID:1lEWVa2s [sage] 2020/12/13(日) 11:17:28 ID:mdqno+pt 但し私は積分や等差数列について勉強をしたことがない。若干あるが。 本に載ってるようなことは不可能でできません。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/979
980: ID:1lEWVa2s [sage] 2020/12/13(日) 11:27:31 ID:mdqno+pt ま、ようするに中二病のたわごとです。 数学じゃないんで。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/980
981: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 11:31:40 ID:HcEKuJwa >>978 >玉置さんが言うに数学は数学者にまかせればいいと。 ID:1lEWVa2sさん、どうも レスありがとう 同意です 数学研究や、難しいところは、数学者に任せれば良い 出来た数学の上澄みを、ありがたく使わせて貰う 例えば、インターネットを使う。インターネットの原理やソフトの正しさの証明を理解する必要は特にない。どんどん使えば良い。必要なら使ってから勉強すれば良い(^^ そう思います http://rio2016.5ch.net/test/read.cgi/math/1602034234/981
982: ID:1lEWVa2s [sage] 2020/12/13(日) 11:32:27 ID:mdqno+pt 今年はもう来年を迎えるので数学やめて哲学やります。 飽きました。 初めて飽きましたなんて公言します。 数学ちゃんがかわいそうなんで言いませんでした。 来年迎えたらまた数学はじめます。 誰の依頼も受けていませんが仕事なんで。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/982
983: ID:1lEWVa2s [sage] 2020/12/13(日) 11:35:02 ID:mdqno+pt っていうかDark Knight(ばっとまん)とか緑黄色社会とか音楽きいたり任天堂スイッチのゲームします。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/983
984: ID:1lEWVa2s [sage] 2020/12/13(日) 11:36:40 ID:mdqno+pt >>981 こんにちは。 明日から仕事と ある任務があるんで焦ってます。(ボーナスが入る) 音楽きいてりらっくすします。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/984
985: 粋蕎 ◆C2UdlLHDRI [sage] 2020/12/13(日) 11:40:32 ID:zkEDAmbd 多様性尊重過剰拡大解釈バカを晒すスレ主 ↓ >>850 > 1.0.999...=1 (スタンダード) > 2.0.999...は、1より無限小だけ小さい (超実数) > > この二つは、現代数学では両立可能で、使い分けができるってことですよ ↑ この 非実数有限超実数0.999… が 実数超実数0.999… と別物である事が未だに分からない様子 http://rio2016.5ch.net/test/read.cgi/math/1602034234/985
986: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 11:47:39 ID:HcEKuJwa >>971 >龍孫江氏のYoutube動画の証明では、Hは正規部分群でないのに、Hに正規部分群Nが含まれるという証明でしょ? スレが終わりそうなので その前に書いておくが 龍孫江氏のYoutube動画の証明で、後半(8分あたり)がだめだな 一般の部分群H(非正規部分群)だったのに そこから、写像を作る そして、いつまにが写像が 群準同型 Φ:G→σ(G/H) になってしまった Hが、正規部分群なら、商群G/Hを作るのは問題ないけど そうでないなら、この部分は根本的におかしいよね(下記) (なお、別の論法として既述のように{e}を使うのは可だが、{e}を使うと、Gが無限群のとき{e}に対する指数は有限にはならない) https://ja.wikipedia.org/wiki/%E5%95%86%E7%BE%A4 商群 群の商において、単位元の同値類はつねにもとの群の正規部分群であり、他の同値類たちはちょうどその正規部分群の剰余類たちである。得られる商は G/N と書かれる、ただし G はもとの群で N は正規部分群である。(これは「G mod N(ジーモッドエヌ)」と読まれる。"mod" は modulo の略である。) 商群の重要性の多くはその準同型との関係に由来する。第一同型定理は任意の群 G の準同型による像はつねに G のある商と同型であると述べている。具体的には、準同型 φ: G → H による G の像は G/ker(φ) と同型である、ただし ker(φ) は φ の核 を表す。 商群の双対概念は部分群であり、これらが大きい群から小さい群を作る2つの主要な方法である。任意の正規部分群 N は、大きい群から部分群 N の元の間の差異を除去して得られる、対応する商群を持つ。圏論では、商群は商対象の例であり、これは部分対象の双対である。商対象の他の例は、商環、商線型空間、商位相空間、商集合を参照。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/986
987: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 11:48:47 ID:HcEKuJwa >>985 (引用開始) > この二つは、現代数学では両立可能で、使い分けができるってことですよ ↑ この 非実数有限超実数0.999… が 実数超実数0.999… と別物である事が未だに分からない様子 (引用終り) 「両立可能」を、誤読、誤解している http://rio2016.5ch.net/test/read.cgi/math/1602034234/987
988: ID:1lEWVa2s [sage] 2020/12/13(日) 11:53:51 ID:YRJF6Rtn もう日高のスレはみない。 数学に粘着しすぎ。 宇宙のるぅるを守らない。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/988
989: ID:1lEWVa2s [sage] 2020/12/13(日) 11:56:03 ID:YRJF6Rtn 日高なんて大っ嫌い。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/989
990: 132人目の素数さん [sage] 2020/12/13(日) 12:09:53 ID:Eof1sjXR >>986 いやぁ、バカって怖ろしいね笑 自分の無知を棚に上げて、相手が間違っているに違いないと言う。 G/Hは商集合だよ。何の間違いもない。 左剰余類分解、または右剰余類分解に応じて Gの元を左または右からかければ、GがG/Hの置換を引き起こす そこから誘導されるGからS_nへの準同型写像をΦとしているだけでしょ。 群論で一般的に使われる考えだよ。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/990
991: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 12:17:23 ID:HcEKuJwa >>973 >「任意の有限群は、対称群の部分群となる」 >に無限群でてこないよ 単に出す必要がないからでしょ 蛇足で、初学者に対して議論を混乱させるだけだから でも、 S_∞⊃・・・⊃Sn⊃Sn-1⊃・・・⊃S1 は、成立している前提でしょ? S_∞を、n→∞の極限として定義しているからね だから、「任意の有限群は、対称群S_∞のある部分群Snの部分群として表現可能」 は言えるだろうよ (余談だが、Snの指数はS_∞に対して無限だけど) http://rio2016.5ch.net/test/read.cgi/math/1602034234/991
992: 132人目の素数さん [sage] 2020/12/13(日) 12:19:23 ID:Eof1sjXR セタに数学の証明理解は無理、ムリ笑 だから、相手の権威や名前などの「信用」でしか見れないw 相手が誰であろうが証明の正しさだけを判断できるのが 数学なのに、それは不可能ですからw http://rio2016.5ch.net/test/read.cgi/math/1602034234/992
993: 132人目の素数さん [sage] 2020/12/13(日) 12:21:12 ID:Eof1sjXR そして極めつけはガロア対応を根本から誤解していた! お前、何のためにガロア原論文読んだの? ガロアも泣いてるわ。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/993
994: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 12:21:39 ID:HcEKuJwa >>990 (引用開始) G/Hは商集合だよ。何の間違いもない。 左剰余類分解、または右剰余類分解に応じて Gの元を左または右からかければ、GがG/Hの置換を引き起こす そこから誘導されるGからS_nへの準同型写像をΦとしているだけでしょ。 群論で一般的に使われる考えだよ。 (引用終り) 昔、もう細かいことは忘れてしまったが、私が過去のガロアスレでした間違いに近いのかもね(^^; Hが正規部分群なら問題がない だが、Hが非正規部分群なら、それ問題だね 自得してください http://rio2016.5ch.net/test/read.cgi/math/1602034234/994
995: ID:1lEWVa2s [sage] 2020/12/13(日) 12:23:11 ID:xl36Z6qX ところでその群の話 体(方程式)に変換できるんですか。 群の論をところどころ全てにおいて方程式に対応した表現になおせますか。 因みにどうぶつの森の雪だるまは下が顔半分までの丈 上があごまでの丈でレシピくれるだけ雪だるまに喜んでもらえるらしい。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/995
996: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 12:23:15 ID:HcEKuJwa >>994 >G/Hは商集合だよ。何の間違いもない。 単なる商集合ではなく 龍氏は、群準同型として扱っている それが、問題 http://rio2016.5ch.net/test/read.cgi/math/1602034234/996
997: 132人目の素数さん [sage] 2020/12/13(日) 12:24:23 ID:Eof1sjXR >>994 氏ね、バカww http://rio2016.5ch.net/test/read.cgi/math/1602034234/997
998: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/12/13(日) 12:24:41 ID:HcEKuJwa >>995 ID:1lEWVa2sさん、どうも >ところでその群の話 >体(方程式)に変換できるんですか。 >群の論をところどころ全てにおいて方程式に対応した表現になおせますか。 直せるよ 細かい話は、次スレで http://rio2016.5ch.net/test/read.cgi/math/1602034234/998
999: 132人目の素数さん [sage] 2020/12/13(日) 12:27:15 ID:Eof1sjXR aHがある剰余類のとき、xaHもまたある剰余類である。 この事実にHが正規部分群である必要はない。 バカのセタがしでかした間違いって aH とbH からabHという剰余類が出来るっていう間違いでしょ。 そんなこと分かってるよ。 数学科を舐めるなくそ爺!www http://rio2016.5ch.net/test/read.cgi/math/1602034234/999
1000: ID:1lEWVa2s [sage] 2020/12/13(日) 12:31:33 ID:xl36Z6qX 私は独学で投影法を完成させている。 共立出版の実用図学を買ったら立方体の投影した平面上の数値を間違えているのである。 見事に滑稽である。みつけたければがんばりな。 何次元の絵も平面上に投影できるし 建築家にもなれる。 http://rio2016.5ch.net/test/read.cgi/math/1602034234/1000
1001: 1001 [] ID:Thread このスレッドは1000を超えました。 新しいスレッドを立ててください。 life time: 67日 2時間 0分 59秒 http://rio2016.5ch.net/test/read.cgi/math/1602034234/1001
1002: 1002 [] ID:Thread 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。 運営にご協力お願いいたします。 ─────────────────── 《プレミアム会員の主な特典》 ★ 5ちゃんねる専用ブラウザからの広告除去 ★ 5ちゃんねるの過去ログを取得 ★ 書き込み規制の緩和 ─────────────────── 会員登録には個人情報は一切必要ありません。 月300円から匿名でご購入いただけます。 ▼ プレミアム会員登録はこちら ▼ https://premium.5ch.net/ ▼ 浪人ログインはこちら ▼ https://login.5ch.net/login.php http://rio2016.5ch.net/test/read.cgi/math/1602034234/1002
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s