[過去ログ] 純粋・応用数学(含むガロア理論)5 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
429: 2020/11/24(火)00:32 ID:yNk5E62V(1/3) AAS
>>426
>第一行目のそれぞれが
>第二行目のそれぞれに
>対応すると思っていいですか?(甘い?)

素因数分解の一意性と素イデアル分解の一意性
平方剰余の相互法則とアルティンの相互法則
は明らかに対応してますね。
省8
430: 2020/11/24(火)00:37 ID:yNk5E62V(2/3) AAS
>ところで「代数的整数論」とは「代数的」な整数論ですか?
>それとも「代数的整数」の(理)論なんですか?

代数的整数の理論でしょうね。
もともと代数的整数論≒代数函数の代数的理論
でもあったんですよ。
これは、デデキント、クロネッカーの時代からそうだったし
さらに遡ることもできるだろう。
省8
431: 2020/11/24(火)00:50 ID:yNk5E62V(3/3) AAS
ζを1の原始n乗根、kをnと素な整数とするとき
ζ^kもまた原始n乗根である。
このとき、(1-ζ^k)/(1-ζ)が単数であることを示しましょうか。
まず分子は分母で割れるから、代数的整数であることはいい。
逆数は、(1-ζ)/(1-ζ^k) ですが、ζ^kも原始n乗根なのだから
ある整数lが存在して、1-ζ=1-ζ^kl となるだろう。
したがって、この場合も分子が分母で割れることが言え
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.029s