[過去ログ] 純粋・応用数学(含むガロア理論)5 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
525(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)08:12 ID:W+1qgd8S(1/13) AAS
>>523
お薦め「数学の力
高校数学で読みとくリーマン予想
小山信也」
ご紹介
いま読んでいるところ
面白いね
省29
526: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)08:13 ID:W+1qgd8S(2/13) AAS
>>525
つづき
(動画があるよ)
動画リンク[YouTube]
『数学の力 高校数学で読みとくリーマン予想』著者 数学者・小山信也氏 講義 前編
547 回視聴?2020/10/15
日経サイエンス
省12
527: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)08:13 ID:W+1qgd8S(3/13) AAS
>>525
つづき
<カスタマーレビュー>
アマゾン(URLが通らないので検索して下さい)
数学の力
高校数学で読みとくリーマン予想
小山信也
省13
539(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)14:13 ID:W+1qgd8S(4/13) AAS
>>524
オイラーとゼータ関数、”太陽と月”の話は、黒川先生の本にも書かれていたな
外部リンク[html]:math0.pm.tokushima-u.ac.jp
広島大学公開講座 高橋浩樹 登録日:2005年2月19日
オイラーとゼータ関数
(抜粋)
題名が「美しい」理由
省7
540(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)14:18 ID:W+1qgd8S(5/13) AAS
>>534
>黒川・小山系は「絶対数学」でリーマン予想解ける解けるサギだし
それ古いよ
いまは、深リーマン予想だよ(>>525の本ご参照)
面白いわ(^^
541(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)14:24 ID:W+1qgd8S(6/13) AAS
>>533
> 2が目出つのは、2が最小だから
違うな
奇数 vs 偶数 という対立構造があるよね
そして、基本的に素数は、奇数だ
が、唯一の例外が”2”だよ
そして、奇数 vs 偶数 という対立構造の中で
省3
542: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)14:34 ID:W+1qgd8S(7/13) AAS
>>539
訂正
広島大学公開講座 高橋浩樹 登録日:2005年2月19日
↓
広島大学 高橋浩樹 登録日:2005年2月19日
さて、ついでに下記
外部リンク[html]:math0.pm.tokushima-u.ac.jp
省8
543: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)14:47 ID:W+1qgd8S(8/13) AAS
>>524
関連追加
外部リンク[pdf]:mathsoc.jp
高校生のための現代数学<ゼータ関数から見た現代数学> 砂田 利一 (東北大学,ゼータ研究所)- 日本数学会 数学通信 第10巻(2005年度)関連 1995
外部リンク[pdf]:mathsoc.jp
素数とゼータ関数(砂田利一)- 日本数学会 数学通信 第10巻(2005年度)関連 1995
547(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)18:01 ID:W+1qgd8S(9/13) AAS
>>540
>いまは、深リーマン予想だよ(>>525の本ご参照)
”深リーマン予想”下記
外部リンク:researchmap.jp
小山 信也
外部リンク[pdf]:researchmap.jp
特集/素数の探求と拡がり 深リーマン予想 小山信也 数理科学12 2019
省17
548(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)18:13 ID:W+1qgd8S(10/13) AAS
>>547
> 5. ζ(s) の深リーマン予想
>(式を略す)
>左辺の分子は,ζ(s) のオイラー積表示のs = 1/2 における有限部分積であり,x →∞ のときに発散する.
>この予想の第一の主張は,この発散の振る舞いが分母の振る舞いに等しいことであり,
この話は
超弦理論で、超対称性を仮定すると
省16
557(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)21:19 ID:W+1qgd8S(11/13) AAS
>>541
(補足)
・”2”という数ですぐ連想するのが、有限単純群の分類。Thompsonの有名な定理があり(下記)、「単純群を位数2の元の中心化群の構造によって分類する」ことで、有限単純群の分類が完成した
・こんな大げさな例でなくとも、日常”2”は、”対”であり、陰と陽、プラスとマイナス、男と女、有と無、・・・など、世の中森羅万象の基本でもあるのです
(例えば、数学的には、プラスとマイナス:-1と1で積を演算として位数2の群を成す。あるいは 有と無:1と0で、mod2 で 和を演算として位数2の群を成す、などなど)
・”2”は、数学にとってもそうだし、森羅万象 日常生活でも、重要な特別の数なのです(^^;
外部リンク[htm]:gomiken.in.coocan.jp
省15
558: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)21:38 ID:W+1qgd8S(12/13) AAS
>>557
>(注:*)Masonの解決が、実はウソだったのです。)
<補足、下記>
外部リンク:ja.wikipedia.org
有限単純群の分類
(抜粋)
1983年にダニエル・ゴーレンシュタインは有限単純群が完全な分類が成されたと発表した。
省13
559(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/29(日)23:28 ID:W+1qgd8S(13/13) AAS
>>552
>オイラー積の収束とリーマン予想の関係なら、まずこれが基本でしょ。
>素数分布論序説 本橋 洋一
維新さん、頭硬いな
”まずこれが基本でしょ”って、素数分布論序説 本橋 洋一 1974年じゃん、古いよそれ
>リーマンゼータ函数に関しては、玄人なら誰が見ても本橋洋一氏が日本では第一人者だと思う。
"本橋 洋一 学歴 - 1966年京都大学 理学部 数学 "って、いま歳いくつだ?
省35
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.228s*