[過去ログ] 純粋・応用数学(含むガロア理論)2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
83(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/06/20(土)21:24 ID:OXXW5633(26/32) AAS
>>55 追加(^^
”一般の位相空間では点列収束の一意性とハウスドルフ性や点列コンパクト性とコンパクト性などの条件は微妙に差がありますが、これの点列のところをフィルターに変えるとなんとこれらは同値になります!フィルターすげえ!!というのが上の記事の主題になります。”
外部リンク:cho-san.hatenablog.jp
ちょーさんメモ出張版 気まぐれブログ
2018-06-09
位相空間上のフィルターの収束
先日位相空間論におけるフィルターの話をpdfにまとめてTwitterに投稿しました
省9
84(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/06/20(土)21:25 ID:OXXW5633(27/32) AAS
>>83
つづき
ここでFN={xn?n>=N}とおいてみましょう。すると上の収束の定義は次のように書き換えられます。
∀U∈N(x) ∃N∈N FN⊂U
これがフィルターで書いた場合の収束であり、上の記事の中でいう命題2.3です。つまりフィルター基底B={FN?N∈N}の収束をみているわけです。
このように点列の収束は集合の包含関係で書き換えられます。さらにこの形で書けばFNが点列である必要すらなくね?という発想に至りこれを一般の集合で書き直すことでフィルターの定義にたどり着きます。
省11
87(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/06/20(土)21:42 ID:OXXW5633(28/32) AAS
AA省
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.027s